mirror of
https://github.com/Aurorastation/Aurora.3.git
synced 2025-12-21 15:42:35 +00:00
* z * a * optional property access operator * a * a * a * bb * a * a * q * c * aa * a * Update tgui/packages/tgui/interfaces/Sensors.tsx Co-authored-by: SleepyGemmy <99297919+SleepyGemmy@users.noreply.github.com> * delete nano sensors * contact detailed scan * tgui fixes * DIST_BETWEEN_TWO_POINTS macro * BEARING_RELATIVE macro * ui_act return true/false instead of topic/nano values * Update code/_helpers/maths.dm Co-authored-by: Fluffy <65877598+FluffyGhoster@users.noreply.github.com> * Update code/_helpers/maths.dm Co-authored-by: Fluffy <65877598+FluffyGhoster@users.noreply.github.com> * a * b * color coding status * capitalizeAll * Grid Coordinate Distance/Range * b --------- Co-authored-by: DreamySkrell <> Co-authored-by: SleepyGemmy <99297919+SleepyGemmy@users.noreply.github.com> Co-authored-by: Fluffy <65877598+FluffyGhoster@users.noreply.github.com>
244 lines
6.2 KiB
Plaintext
244 lines
6.2 KiB
Plaintext
// min is inclusive, max is exclusive
|
|
/proc/Wrap(val, min, max)
|
|
var/d = max - min
|
|
var/t = Floor((val - min) / d)
|
|
return val - (t * d)
|
|
|
|
/proc/Default(a, b)
|
|
return a ? a : b
|
|
|
|
// Trigonometric functions.
|
|
/proc/Tan(x)
|
|
return sin(x) / cos(x)
|
|
|
|
/proc/Csc(x)
|
|
return 1 / sin(x)
|
|
|
|
/proc/Sec(x)
|
|
return 1 / cos(x)
|
|
|
|
/proc/Cot(x)
|
|
return 1 / Tan(x)
|
|
|
|
/proc/Atan2(x, y)
|
|
if(!x && !y) return 0
|
|
var/a = arccos(x / sqrt(x*x + y*y))
|
|
return y >= 0 ? a : -a
|
|
|
|
/proc/Floor(x)
|
|
return round(x)
|
|
|
|
/// Value or the next integer in a positive direction: Ceil(-1.5) = -1 , Ceil(1.5) = 2
|
|
#define Ceil(value) ( -round(-(value)) )
|
|
|
|
/proc/Ceiling(x, y=1)
|
|
return -round(-x / y) * y
|
|
|
|
/proc/Modulus(x, y)
|
|
return ( (x) - (y) * round((x) / (y)) )
|
|
|
|
/proc/Percent(current_value, max_value, rounding = 1)
|
|
return round((current_value / max_value) * 100, rounding)
|
|
|
|
// Greatest Common Divisor: Euclid's algorithm.
|
|
/proc/Gcd(a, b)
|
|
while (1)
|
|
if (!b) return a
|
|
a %= b
|
|
if (!a) return b
|
|
b %= a
|
|
|
|
// Least Common Multiple. The formula is a consequence of: a*b = LCM*GCD.
|
|
/proc/Lcm(a, b)
|
|
return abs(a) * abs(b) / Gcd(a, b)
|
|
|
|
// Useful in the cases when x is a large expression, e.g. x = 3a/2 + b^2 + Function(c)
|
|
/proc/Square(x)
|
|
return x*x
|
|
|
|
/proc/Inverse(x)
|
|
return 1 / x
|
|
|
|
// Condition checks.
|
|
/proc/IsAboutEqual(a, b, delta = 0.1)
|
|
return abs(a - b) <= delta
|
|
|
|
// Returns true if val is from min to max, inclusive.
|
|
/proc/IsInRange(val, min, max)
|
|
return (min <= val && val <= max)
|
|
|
|
// Same as above, exclusive.
|
|
/proc/IsInRange_Ex(val, min, max)
|
|
return (min < val && val < max)
|
|
|
|
/proc/IsInteger(x)
|
|
return Floor(x) == x
|
|
|
|
/proc/IsMultiple(x, y)
|
|
return x % y == 0
|
|
|
|
#define ISEVEN(x) (x % 2 == 0)
|
|
#define ISODD(x) (x % 2 != 0)
|
|
|
|
// Performs a linear interpolation between a and b.
|
|
// Note: weight=0 returns a, weight=1 returns b, and weight=0.5 returns the mean of a and b.
|
|
/proc/Interpolate(a, b, weight = 0.5)
|
|
return a + (b - a) * weight // Equivalent to: a*(1 - weight) + b*weight
|
|
|
|
/proc/Mean(...)
|
|
var/sum = 0
|
|
for(var/val in args)
|
|
sum += val
|
|
return sum / args.len
|
|
|
|
// Returns the nth root of x.
|
|
/proc/Root(n, x)
|
|
return x ** (1 / n)
|
|
|
|
// The quadratic formula. Returns a list with the solutions, or an empty list
|
|
// if they are imaginary.
|
|
/proc/SolveQuadratic(a, b, c)
|
|
ASSERT(a)
|
|
|
|
. = list()
|
|
var/discriminant = b*b - 4*a*c
|
|
var/bottom = 2*a
|
|
|
|
// Return if the roots are imaginary.
|
|
if(discriminant < 0)
|
|
return
|
|
|
|
var/root = sqrt(discriminant)
|
|
. += (-b + root) / bottom
|
|
|
|
// If discriminant == 0, there would be two roots at the same position.
|
|
if(discriminant != 0)
|
|
. += (-b - root) / bottom
|
|
|
|
/// 180 / Pi ~ 57.2957795
|
|
#define TO_DEGREES(radians) ((radians) * 57.2957795)
|
|
/// Pi / 180 ~ 0.0174532925
|
|
#define TO_RADIANS(degrees) ((degrees) * 0.0174532925)
|
|
|
|
// Vector algebra.
|
|
/proc/squaredNorm(x, y)
|
|
return x*x + y*y
|
|
|
|
/proc/norm(x, y)
|
|
return sqrt(squaredNorm(x, y))
|
|
|
|
/proc/IsPowerOfTwo(var/val)
|
|
return (val & (val-1)) == 0
|
|
|
|
/proc/RoundUpToPowerOfTwo(var/val)
|
|
return 2 ** -round(-log(2,val))
|
|
|
|
//Returns the cube root of the input number
|
|
/proc/cubert(var/num, var/iterations = 10)
|
|
. = num
|
|
for (var/i = 0, i < iterations, i++)
|
|
. = (1/3) * (num/(.**2)+2*.)
|
|
|
|
|
|
// Old scripting functions used by all over place.
|
|
// Round down
|
|
/proc/n_floor(var/num)
|
|
if(isnum(num))
|
|
return round(num)
|
|
|
|
// Round up
|
|
/proc/n_ceil(var/num)
|
|
if(isnum(num))
|
|
return round(num)+1
|
|
|
|
// Round to nearest integer
|
|
/proc/n_round(var/num)
|
|
if(isnum(num))
|
|
if(num-round(num)<0.5)
|
|
return round(num)
|
|
return n_ceil(num)
|
|
|
|
// Returns 1 if N is inbetween Min and Max
|
|
/proc/n_inrange(var/num, var/min=-1, var/max=1)
|
|
if(isnum(num)&&isnum(min)&&isnum(max))
|
|
return ((min <= num) && (num <= max))
|
|
|
|
#define MODULUS_FLOAT(X, Y) ( (X) - (Y) * round((X) / (Y)) )
|
|
|
|
// Will filter out extra rotations and negative rotations
|
|
// E.g: 540 becomes 180. -180 becomes 180.
|
|
#define SIMPLIFY_DEGREES(degrees) (MODULUS_FLOAT((degrees), 360))
|
|
|
|
/// Value or the next multiple of divisor in a positive direction. Ceilm(-1.5, 0.3) = -1.5 , Ceilm(-1.5, 0.4) = -1.2
|
|
#define Ceilm(value, divisor) ( -round(-(value) / (divisor)) * (divisor) )
|
|
|
|
/// Value or the nearest multiple of divisor in either direction
|
|
#define Roundm(value, divisor) round((value), (divisor))
|
|
|
|
/// A random real number between low and high inclusive
|
|
#define Frand(low, high) ( rand() * ((high) - (low)) + (low) )
|
|
|
|
|
|
/**
|
|
* Get a list of turfs in a line from `starting_atom` to `ending_atom`.
|
|
*
|
|
* Uses the ultra-fast [Bresenham Line-Drawing Algorithm](https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm).
|
|
*/
|
|
/proc/get_line(atom/starting_atom, atom/ending_atom)
|
|
var/current_x_step = starting_atom.x // start at X and Y, then add 1 or -1 to these to get every turf from start to end
|
|
var/current_y_step = starting_atom.y
|
|
var/starting_z = starting_atom.z
|
|
|
|
var/list/line = list(get_turf(starting_atom))
|
|
|
|
var/x_distance = ending_atom.x - current_x_step
|
|
var/y_distance = ending_atom.y - current_y_step
|
|
|
|
var/abs_x_distance = abs(x_distance)
|
|
var/abs_y_distance = abs(y_distance)
|
|
|
|
var/x_distance_sign = SIGN(x_distance)
|
|
var/y_distance_sign = SIGN(y_distance)
|
|
|
|
var/x = abs_x_distance >> 1
|
|
var/y = abs_y_distance >> 1
|
|
|
|
if (abs_x_distance >= abs_y_distance)
|
|
for (var/distance_counter in 0 to (abs_x_distance - 1))
|
|
y += abs_y_distance
|
|
|
|
if(y >= abs_x_distance) // Every abs_y_distance steps, step once in y direction
|
|
y -= abs_x_distance
|
|
current_y_step += y_distance_sign
|
|
|
|
current_x_step += x_distance_sign // Step in x direction
|
|
line += locate(current_x_step, current_y_step, starting_z)
|
|
else
|
|
for (var/distance_counter in 0 to (abs_y_distance - 1))
|
|
x += abs_x_distance
|
|
|
|
if(x >= abs_y_distance)
|
|
x -= abs_y_distance
|
|
current_x_step += x_distance_sign
|
|
|
|
current_y_step += y_distance_sign
|
|
line += locate(current_x_step, current_y_step, starting_z)
|
|
|
|
return line
|
|
|
|
|
|
/// Returns the distance between two points
|
|
#define DIST_BETWEEN_TWO_POINTS(ax, ay, bx, by) (sqrt((bx-ax)*(bx-ax))+((by-ay)*(by-ay)))
|
|
|
|
/**
|
|
* Returns bearing of object relative to observer (0-360)
|
|
* a is the observer, b is the other object
|
|
*
|
|
* observer_x - Observer's X coordinate
|
|
* observer_y - Observer's Y coordinate
|
|
* target_x - Target's X coordinate
|
|
* target_y - Target's Y coordinate
|
|
*/
|
|
#define BEARING_RELATIVE(observer_x, observer_y, target_x, target_y) (90 - Atan2(target_x - observer_x, target_y - observer_y))
|
|
|