// Credits to Nickr5 for the useful procs I've taken from his library resource. var/const/E = 2.71828183 var/const/Sqrt2 = 1.41421356 // List of square roots for the numbers 1-100. var/list/sqrtTable = list(1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10) /proc/sign(x) return x!=0?x/abs(x):0 /proc/Atan2(x, y) if(!x && !y) return 0 var/a = arccos(x / sqrt(x*x + y*y)) return y >= 0 ? a : -a /proc/Ceiling(x, y=1) return -round(-x / y) * y /proc/Floor(x, y=1) return round(x / y) * y #define Clamp(CLVALUE,CLMIN,CLMAX) ( max( (CLMIN), min((CLVALUE), (CLMAX)) ) ) // cotangent /proc/Cot(x) return 1 / Tan(x) // cosecant /proc/Csc(x) return 1 / sin(x) /proc/Default(a, b) return a ? a : b // Greatest Common Divisor - Euclid's algorithm /proc/Gcd(a, b) return b ? Gcd(b, a % b) : a /proc/Inverse(x) return 1 / x /proc/IsAboutEqual(a, b, deviation = 0.1) return abs(a - b) <= deviation /proc/IsEven(x) return x % 2 == 0 // Returns true if val is from min to max, inclusive. /proc/IsInRange(val, min, max) return min <= val && val <= max /proc/IsInteger(x) return round(x) == x /proc/IsOdd(x) return !IsEven(x) /proc/IsMultiple(x, y) return x % y == 0 // Least Common Multiple /proc/Lcm(a, b) return abs(a) / Gcd(a, b) * abs(b) // Performs a linear interpolation between a and b. // Note that amount=0 returns a, amount=1 returns b, and // amount=0.5 returns the mean of a and b. /proc/Lerp(a, b, amount = 0.5) return a + (b - a) * amount //Calculates the sum of a list of numbers. /proc/Sum(var/list/data) . = 0 for(var/val in data) .+= val //Calculates the mean of a list of numbers. /proc/Mean(var/list/data) . = Sum(data) / (data.len) // Returns the nth root of x. /proc/Root(n, x) return x ** (1 / n) // secant /proc/Sec(x) return 1 / cos(x) // The quadratic formula. Returns a list with the solutions, or an empty list // if they are imaginary. /proc/SolveQuadratic(a, b, c) ASSERT(a) . = list() var/d = b*b - 4 * a * c var/bottom = 2 * a if(d < 0) return var/root = sqrt(d) . += (-b + root) / bottom if(!d) return . += (-b - root) / bottom // tangent /proc/Tan(x) return sin(x) / cos(x) /proc/ToDegrees(radians) // 180 / Pi return radians * 57.2957795 /proc/ToRadians(degrees) // Pi / 180 return degrees * 0.0174532925 // Will filter out extra rotations and negative rotations // E.g: 540 becomes 180. -180 becomes 180. /proc/SimplifyDegrees(degrees) degrees = degrees % 360 if(degrees < 0) degrees += 360 return degrees // min is inclusive, max is exclusive /proc/Wrap(val, min, max) var/d = max - min var/t = round((val - min) / d) return val - (t * d) //A logarithm that converts an integer to a number scaled between 0 and 1 (can be tweaked to be higher). //Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions. /proc/TransformUsingVariable(input, inputmaximum, scaling_modifier = 0) var/inputToDegrees = (input/inputmaximum)*180 //Converting from a 0 -> 100 scale to a 0 -> 180 scale. The 0 -> 180 scale corresponds to degrees var/size_factor = ((-cos(inputToDegrees) +1) /2) //returns a value from 0 to 1 return size_factor + scaling_modifier //scale mod of 0 results in a number from 0 to 1. A scale modifier of +0.5 returns 0.5 to 1.5 //world<< "Transform multiplier of [src] is [size_factor + scaling_modifer]" //converts a uniform distributed random number into a normal distributed one //since this method produces two random numbers, one is saved for subsequent calls //(making the cost negligble for every second call) //This will return +/- decimals, situated about mean with standard deviation stddev //68% chance that the number is within 1stddev //95% chance that the number is within 2stddev //98% chance that the number is within 3stddev...etc var/gaussian_next #define ACCURACY 10000 /proc/gaussian(mean, stddev) var/R1;var/R2;var/working if(gaussian_next != null) R1 = gaussian_next gaussian_next = null else do R1 = rand(-ACCURACY,ACCURACY)/ACCURACY R2 = rand(-ACCURACY,ACCURACY)/ACCURACY working = R1*R1 + R2*R2 while(working >= 1 || working==0) working = sqrt(-2 * log(working) / working) R1 *= working gaussian_next = R2 * working return (mean + stddev * R1) #undef ACCURACY