///Calculate the angle between two movables and the west|east coordinate /proc/get_angle(atom/movable/start, atom/movable/end) if(!start || !end) return 0 var/dy =(ICON_SIZE_Y * end.y + end.pixel_y) - (ICON_SIZE_Y * start.y + start.pixel_y) var/dx =(ICON_SIZE_X * end.x + end.pixel_x) - (ICON_SIZE_X * start.x + start.pixel_x) return delta_to_angle(dx, dy) /// Calculate the angle produced by a pair of x and y deltas /proc/delta_to_angle(x, y) if(!y) return (x >= 0) ? 90 : 270 . = arctan(x/y) if(y < 0) . += 180 else if(x < 0) . += 360 /// Angle between two arbitrary points and horizontal line same as [/proc/get_angle] /proc/get_angle_raw(start_x, start_y, start_pixel_x, start_pixel_y, end_x, end_y, end_pixel_x, end_pixel_y) var/dy = (ICON_SIZE_Y * end_y + end_pixel_y) - (ICON_SIZE_Y * start_y + start_pixel_y) var/dx = (ICON_SIZE_X * end_x + end_pixel_x) - (ICON_SIZE_X * start_x + start_pixel_x) if(!dy) return (dx >= 0) ? 90 : 270 . = arctan(dx/dy) if(dy < 0) . += 180 else if(dx < 0) . += 360 ///for getting the angle when animating something's pixel_x and pixel_y /proc/get_pixel_angle(y, x) if(!y) return (x >= 0) ? 90 : 270 . = arctan(x/y) if(y < 0) . += 180 else if(x < 0) . += 360 /** * Get a list of turfs in a line from `starting_atom` to `ending_atom`. * * Uses the ultra-fast [Bresenham Line-Drawing Algorithm](https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm). */ /proc/get_line(atom/starting_atom, atom/ending_atom) var/current_x_step = starting_atom.x//start at x and y, then add 1 or -1 to these to get every turf from starting_atom to ending_atom var/current_y_step = starting_atom.y var/starting_z = starting_atom.z var/list/line = list(get_turf(starting_atom))//get_turf(atom) is faster than locate(x, y, z) var/x_distance = ending_atom.x - current_x_step //x distance var/y_distance = ending_atom.y - current_y_step var/abs_x_distance = abs(x_distance)//Absolute value of x distance var/abs_y_distance = abs(y_distance) var/x_distance_sign = SIGN(x_distance) //Sign of x distance (+ or -) var/y_distance_sign = SIGN(y_distance) var/x = abs_x_distance >> 1 //Counters for steps taken, setting to distance/2 var/y = abs_y_distance >> 1 //Bit-shifting makes me l33t. It also makes get_line() unnecessarily fast. if(abs_x_distance >= abs_y_distance) //x distance is greater than y for(var/distance_counter in 0 to (abs_x_distance - 1))//It'll take abs_x_distance steps to get there y += abs_y_distance if(y >= abs_x_distance) //Every abs_y_distance steps, step once in y direction y -= abs_x_distance current_y_step += y_distance_sign current_x_step += x_distance_sign //Step on in x direction line += locate(current_x_step, current_y_step, starting_z)//Add the turf to the list else for(var/distance_counter in 0 to (abs_y_distance - 1)) x += abs_x_distance if(x >= abs_y_distance) x -= abs_y_distance current_x_step += x_distance_sign current_y_step += y_distance_sign line += locate(current_x_step, current_y_step, starting_z) return line /** * Get a list of turfs in a perimeter given the `center_atom` and `radius`. * Automatically rounds down decimals and does not accept values less than positive 1 as they don't play well with it. * Is efficient on large circles but ugly on small ones * Uses [Jesko`s method to the midpoint circle Algorithm](https://en.wikipedia.org/wiki/Midpoint_circle_algorithm). */ /proc/get_perimeter(atom/center, radius) if(radius < 1) return var/rounded_radius = round(radius) var/x = center.x var/y = center.y var/z = center.z var/t1 = rounded_radius/16 var/dx = rounded_radius var/dy = 0 var/t2 var/list/perimeter = list() while(dx >= dy) perimeter += locate(x + dx, y + dy, z) perimeter += locate(x - dx, y + dy, z) perimeter += locate(x + dx, y - dy, z) perimeter += locate(x - dx, y - dy, z) perimeter += locate(x + dy, y + dx, z) perimeter += locate(x - dy, y + dx, z) perimeter += locate(x + dy, y - dx, z) perimeter += locate(x - dy, y - dx, z) dy += 1 t1 += dy t2 = t1 - dx if(t2 > 0) t1 = t2 dx -= 1 return perimeter /** * Formats a number into a list representing the si unit. * Access the coefficient with [SI_COEFFICIENT], and access the unit with [SI_UNIT]. * * Supports SI exponents between 1e-15 to 1e15, but properly handles numbers outside that range as well. * Arguments: * * value - The number to convert to text. Can be positive or negative. * * unit - The base unit of the number, such as "Pa" or "W". * * maxdecimals - Maximum amount of decimals to display for the final number. Defaults to 1. * Returns: [SI_COEFFICIENT = si unit coefficient, SI_UNIT = prefixed si unit.] */ /proc/siunit_isolated(value, unit, maxdecimals=1) var/static/list/prefixes = list("q","r","y","z","a","f","p","n","μ","m","","k","M","G","T","P","E","Z","Y","R","Q") // We don't have prefixes beyond this point // and this also captures value = 0 which you can't compute the logarithm for // and also byond numbers are floats and doesn't have much precision beyond this point anyway if(abs(value) < 1e-30) . = list(SI_COEFFICIENT = 0, SI_UNIT = " [unit]") return var/exponent = clamp(log(10, abs(value)), -30, 30) // Calculate the exponent and clamp it so we don't go outside the prefix list bounds var/divider = 10 ** (round(exponent / 3) * 3) // Rounds the exponent to nearest SI unit and power it back to the full form var/coefficient = round(value / divider, 10 ** -maxdecimals) // Calculate the coefficient and round it to desired decimals var/prefix_index = round(exponent / 3) + 11 // Calculate the index in the prefixes list for this exponent // An edge case which happens if we round 999.9 to 0 decimals for example, which gets rounded to 1000 // In that case, we manually swap up to the next prefix if there is one available if(coefficient >= 1000 && prefix_index < 21) coefficient /= 1e3 prefix_index++ var/prefix = prefixes[prefix_index] . = list(SI_COEFFICIENT = coefficient, SI_UNIT = " [prefix][unit]") /**Format a power value in prefixed watts. * Converts from energy if convert is true. * Args: * - power: The value of power to format. * - convert: Whether to convert this from joules. * - datum/controller/subsystem/scheduler: used in the conversion * Returns: The string containing the formatted power. */ /proc/display_power(power, convert = TRUE, datum/controller/subsystem/scheduler = SSmachines) power = convert ? energy_to_power(power, scheduler) : power return siunit(power, "W", 3) /** * Format an energy value in prefixed joules. * Arguments * * * units - the value t convert */ /proc/display_energy(units) return siunit(units, "J", 3) /** * Converts the joule to the watt, assuming SSmachines tick rate. * Arguments * * * joules - the value in joules to convert * * datum/controller/subsystem/scheduler - the subsystem whos wait time is used in the conversion */ /proc/energy_to_power(joules, datum/controller/subsystem/scheduler = SSmachines) return joules * (1 SECONDS) / scheduler.wait /** * Converts the watt to the joule, assuming SSmachines tick rate. * * Arguments * * * joules - the value in joules to convert * * datum/controller/subsystem/scheduler - the subsystem whos wait time is used in the conversion */ /proc/power_to_energy(watts, datum/controller/subsystem/scheduler = SSmachines) return watts * scheduler.wait / (1 SECONDS) ///chances are 1:value. anyprob(1) will always return true /proc/anyprob(value) return (rand(1,value) == value) ///counts the number of bits in Byond's 16-bit width field, in constant time and memory! /proc/bit_count(bit_field) var/temp = bit_field - ((bit_field >> 1) & 46811) - ((bit_field >> 2) & 37449) //0133333 and 0111111 respectively temp = ((temp + (temp >> 3)) & 29127) % 63 //070707 return temp /// Returns the name of the mathematical tuple of same length as the number arg (rounded down). /proc/make_tuple(number) var/static/list/units_prefix = list("", "un", "duo", "tre", "quattuor", "quin", "sex", "septen", "octo", "novem") var/static/list/tens_prefix = list("", "decem", "vigin", "trigin", "quadragin", "quinquagin", "sexagin", "septuagin", "octogin", "nongen") var/static/list/one_to_nine = list("monuple", "double", "triple", "quadruple", "quintuple", "sextuple", "septuple", "octuple", "nonuple") number = round(number) switch(number) if(0) return "empty tuple" if(1 to 9) return one_to_nine[number] if(10 to 19) return "[units_prefix[(number%10)+1]]decuple" if(20 to 99) return "[units_prefix[(number%10)+1]][tens_prefix[round((number % 100)/10)+1]]tuple" if(100) return "centuple" else //It gets too tedious to use latin prefixes from here. return "[number]-tuple" /// Takes a value, and a threshold it has to at least match /// returns the correctly signed value max'd to the threshold /proc/at_least(new_value, threshold) var/sign = SIGN(new_value) // SIGN will return 0 if the value is 0, so we just go to the positive threshold if(!sign) return threshold if(sign == 1) return max(new_value, threshold) if(sign == -1) return min(new_value, threshold * -1) /// Takes two values x and y, and returns 1/((1/x) + y) /// Useful for providing an additive modifier to a value that is used as a divisor /proc/reciprocal_add(x, y) return 1/((1/x)+y) /// Returns a text string containing N prefixed with a series of zeros with length equal to max_zeros minus log(10, N), rounded down. /proc/prefix_zeros_to_number(number, max_zeros) var/zeros = "" var/how_many_zeros = max_zeros - round(log(10, number)) for(var/zero in 1 to how_many_zeros) zeros += "0" return "[zeros][number]"