Files
Bubberstation/code/__HELPERS/turfs.dm
SkyratBot 91837e26b4 [MIRROR] Progress bars & cleaning particles will centre on the tile occupied by large icon objects [MDB IGNORE] (#23394)
* Progress bars & cleaning particles will centre on the tile occupied by large icon objects (#77940)

## About The Pull Request

Do_after bars always draw based on the top-left corner of the targetted
atom, for atoms with sprites that are larger than 32x32 this gives them
a weird offset instead of being centred, which bugs me.
I have tried my best to figure out a way to reverse this which does not
interfere with atoms which use pixel_x/pixel_y to visually appear to be
on a different tile.

## Why It's Good For The Game

Before:

![image](https://github.com/tgstation/tgstation/assets/7483112/a1127695-58fa-40fc-aa0a-6bc8a0589e74)
he hates how you missed him completely 😦

After:

![image](https://github.com/tgstation/tgstation/assets/7483112/deb4fbb8-e286-46b4-84a7-82b65b4f1eee)
now you're cleaning his feet 🙂

## Changelog

🆑
image: progress bars and cleaning particles are now centered on the tile
occupied by the target, if it is a big sprite
/🆑

* Progress bars & cleaning particles will centre on the tile occupied by large icon objects

---------

Co-authored-by: Jacquerel <hnevard@gmail.com>
2023-08-28 23:40:16 -04:00

416 lines
15 KiB
Plaintext

///Returns location. Returns null if no location was found.
/proc/get_teleport_loc(turf/location, mob/target, distance = 1, density_check = FALSE, closed_turf_check = FALSE, errorx = 0, errory = 0, eoffsetx = 0, eoffsety = 0)
/*
Location where the teleport begins, target that will teleport, distance to go, density checking 0/1(yes/no), closed turf checking.
Random error in tile placement x, error in tile placement y, and block offset.
Block offset tells the proc how to place the box. Behind teleport location, relative to starting location, forward, etc.
Negative values for offset are accepted, think of it in relation to North, -x is west, -y is south. Error defaults to positive.
Turf and target are separate in case you want to teleport some distance from a turf the target is not standing on or something.
*/
var/dirx = 0//Generic location finding variable.
var/diry = 0
var/xoffset = 0//Generic counter for offset location.
var/yoffset = 0
var/b1xerror = 0//Generic placing for point A in box. The lower left.
var/b1yerror = 0
var/b2xerror = 0//Generic placing for point B in box. The upper right.
var/b2yerror = 0
errorx = abs(errorx)//Error should never be negative.
errory = abs(errory)
switch(target.dir)//This can be done through equations but switch is the simpler method. And works fast to boot.
//Directs on what values need modifying.
if(1)//North
diry += distance
yoffset += eoffsety
xoffset += eoffsetx
b1xerror -= errorx
b1yerror -= errory
b2xerror += errorx
b2yerror += errory
if(2)//South
diry -= distance
yoffset -= eoffsety
xoffset += eoffsetx
b1xerror -= errorx
b1yerror -= errory
b2xerror += errorx
b2yerror += errory
if(4)//East
dirx += distance
yoffset += eoffsetx//Flipped.
xoffset += eoffsety
b1xerror -= errory//Flipped.
b1yerror -= errorx
b2xerror += errory
b2yerror += errorx
if(8)//West
dirx -= distance
yoffset -= eoffsetx//Flipped.
xoffset += eoffsety
b1xerror -= errory//Flipped.
b1yerror -= errorx
b2xerror += errory
b2yerror += errorx
var/turf/destination = locate(location.x+dirx,location.y+diry,location.z)
if(!destination)//If there isn't a destination.
return
if(!errorx && !errory)//If errorx or y were not specified.
if(density_check && destination.density)
return
if(closed_turf_check && isclosedturf(destination))
return//If closed was specified.
if(destination.x>world.maxx || destination.x<1)
return
if(destination.y>world.maxy || destination.y<1)
return
var/destination_list[] = list()//To add turfs to list.
//destination_list = new()
/*This will draw a block around the target turf, given what the error is.
Specifying the values above will basically draw a different sort of block.
If the values are the same, it will be a square. If they are different, it will be a rectengle.
In either case, it will center based on offset. Offset is position from center.
Offset always calculates in relation to direction faced. In other words, depending on the direction of the teleport,
the offset should remain positioned in relation to destination.*/
var/turf/center = locate((destination.x + xoffset), (destination.y + yoffset), location.z)//So now, find the new center.
//Now to find a box from center location and make that our destination.
var/width = (b2xerror - b1xerror) + 1
var/height = (b2yerror - b1yerror) + 1
for(var/turf/current_turf as anything in CORNER_BLOCK_OFFSET(center, width, height, b1xerror, b1yerror))
if(density_check && current_turf.density)
continue//If density was specified.
if(closed_turf_check && isclosedturf(current_turf))
continue//If closed was specified.
if(current_turf.x > world.maxx || current_turf.x < 1)
continue//Don't want them to teleport off the map.
if(current_turf.y > world.maxy || current_turf.y < 1)
continue
destination_list += current_turf
if(!destination_list.len)
return
destination = pick(destination_list)
return destination
/**
* Returns the top-most atom sitting on the turf.
* For example, using this on a disk, which is in a bag, on a mob,
* will return the mob because it's on the turf.
*
* Arguments
* * something_in_turf - a movable within the turf, somewhere.
* * stop_type - optional - stops looking if stop_type is found in the turf, returning that type (if found).
**/
/proc/get_atom_on_turf(atom/movable/something_in_turf, stop_type)
if(!istype(something_in_turf))
CRASH("get_atom_on_turf was not passed an /atom/movable! Got [isnull(something_in_turf) ? "null":"type: [something_in_turf.type]"]")
var/atom/movable/topmost_thing = something_in_turf
while(topmost_thing?.loc && !isturf(topmost_thing.loc))
topmost_thing = topmost_thing.loc
if(stop_type && istype(topmost_thing, stop_type))
break
return topmost_thing
///Returns the turf located at the map edge in the specified direction relative to target_atom used for mass driver
/proc/get_edge_target_turf(atom/target_atom, direction)
var/turf/target = locate(target_atom.x, target_atom.y, target_atom.z)
if(!target_atom || !target)
return 0
//since NORTHEAST == NORTH|EAST, etc, doing it this way allows for diagonal mass drivers in the future
//and isn't really any more complicated
var/x = target_atom.x
var/y = target_atom.y
if(direction & NORTH)
y = world.maxy
else if(direction & SOUTH) //you should not have both NORTH and SOUTH in the provided direction
y = 1
if(direction & EAST)
x = world.maxx
else if(direction & WEST)
x = 1
if(ISDIAGONALDIR(direction)) //let's make sure it's accurately-placed for diagonals
var/lowest_distance_to_map_edge = min(abs(x - target_atom.x), abs(y - target_atom.y))
return get_ranged_target_turf(target_atom, direction, lowest_distance_to_map_edge)
return locate(x,y,target_atom.z)
// returns turf relative to target_atom in given direction at set range
// result is bounded to map size
// note range is non-pythagorean
// used for disposal system
/proc/get_ranged_target_turf(atom/target_atom, direction, range)
var/x = target_atom.x
var/y = target_atom.y
if(direction & NORTH)
y = min(world.maxy, y + range)
else if(direction & SOUTH)
y = max(1, y - range)
if(direction & EAST)
x = min(world.maxx, x + range)
else if(direction & WEST) //if you have both EAST and WEST in the provided direction, then you're gonna have issues
x = max(1, x - range)
return locate(x,y,target_atom.z)
/**
* Get ranged target turf, but with direct targets as opposed to directions
*
* Starts at atom starting_atom and gets the exact angle between starting_atom and target
* Moves from starting_atom with that angle, Range amount of times, until it stops, bound to map size
* Arguments:
* * starting_atom - Initial Firer / Position
* * target - Target to aim towards
* * range - Distance of returned target turf from starting_atom
* * offset - Angle offset, 180 input would make the returned target turf be in the opposite direction
*/
/proc/get_ranged_target_turf_direct(atom/starting_atom, atom/target, range, offset)
var/angle = ATAN2(target.x - starting_atom.x, target.y - starting_atom.y)
if(offset)
angle += offset
var/turf/starting_turf = get_turf(starting_atom)
for(var/i in 1 to range)
var/turf/check = locate(starting_atom.x + cos(angle) * i, starting_atom.y + sin(angle) * i, starting_atom.z)
if(!check)
break
starting_turf = check
return starting_turf
/// returns turf relative to target_atom offset in dx and dy tiles, bound to map limits
/proc/get_offset_target_turf(atom/target_atom, dx, dy)
var/x = min(world.maxx, max(1, target_atom.x + dx))
var/y = min(world.maxy, max(1, target_atom.y + dy))
return locate(x, y, target_atom.z)
/**
* Lets the turf this atom's *ICON* appears to inhabit
* it takes into account:
* Pixel_x/y
* Matrix x/y
* NOTE: if your atom has non-standard bounds then this proc
* will handle it, but:
* if the bounds are even, then there are an even amount of "middle" turfs, the one to the EAST, NORTH, or BOTH is picked
* this may seem bad, but you're atleast as close to the center of the atom as possible, better than byond's default loc being all the way off)
* if the bounds are odd, the true middle turf of the atom is returned
**/
/proc/get_turf_pixel(atom/checked_atom)
var/turf/atom_turf = get_turf(checked_atom) //use checked_atom's turfs, as it's coords are the same as checked_atom's AND checked_atom's coords are lost if it is inside another atom
if(!atom_turf)
return null
var/list/offsets = get_visual_offset(checked_atom)
return pixel_offset_turf(atom_turf, offsets)
/**
* Returns how visually "off" the atom is from its source turf as a list of x, y (in pixel steps)
* it takes into account:
* Pixel_x/y
* Matrix x/y
* Icon width/height
**/
/proc/get_visual_offset(atom/checked_atom)
//Find checked_atom's matrix so we can use it's X/Y pixel shifts
var/matrix/atom_matrix = matrix(checked_atom.transform)
var/pixel_x_offset = checked_atom.pixel_x + atom_matrix.get_x_shift()
var/pixel_y_offset = checked_atom.pixel_y + atom_matrix.get_y_shift()
//Irregular objects
var/list/icon_dimensions = get_icon_dimensions(checked_atom.icon)
var/checked_atom_icon_height = icon_dimensions["width"]
var/checked_atom_icon_width = icon_dimensions["height"]
if(checked_atom_icon_height != world.icon_size || checked_atom_icon_width != world.icon_size)
pixel_x_offset += ((checked_atom_icon_width / world.icon_size) - 1) * (world.icon_size * 0.5)
pixel_y_offset += ((checked_atom_icon_height / world.icon_size) - 1) * (world.icon_size * 0.5)
return list(pixel_x_offset, pixel_y_offset)
/**
* Takes a turf, and a list of x and y pixel offsets and returns the turf that the offset position best lands in
**/
/proc/pixel_offset_turf(turf/offset_from, list/offsets)
//DY and DX
var/rough_x = round(round(offsets[1], world.icon_size) / world.icon_size)
var/rough_y = round(round(offsets[2], world.icon_size) / world.icon_size)
var/final_x = clamp(offset_from.x + rough_x, 1, world.maxx)
var/final_y = clamp(offset_from.y + rough_y, 1, world.maxy)
if(final_x || final_y)
return locate(final_x, final_y, offset_from.z)
return offset_from
///Returns a turf based on text inputs, original turf and viewing client
/proc/parse_caught_click_modifiers(list/modifiers, turf/origin, client/viewing_client)
if(!modifiers)
return null
var/screen_loc = splittext(LAZYACCESS(modifiers, SCREEN_LOC), ",")
var/list/actual_view = getviewsize(viewing_client ? viewing_client.view : world.view)
var/click_turf_x = splittext(screen_loc[1], ":")
var/click_turf_y = splittext(screen_loc[2], ":")
var/click_turf_z = origin.z
var/click_turf_px = text2num(click_turf_x[2])
var/click_turf_py = text2num(click_turf_y[2])
click_turf_x = origin.x + text2num(click_turf_x[1]) - round(actual_view[1] / 2) - 1
click_turf_y = origin.y + text2num(click_turf_y[1]) - round(actual_view[2] / 2) - 1
var/turf/click_turf = locate(clamp(click_turf_x, 1, world.maxx), clamp(click_turf_y, 1, world.maxy), click_turf_z)
LAZYSET(modifiers, ICON_X, "[(click_turf_px - click_turf.pixel_x) + ((click_turf_x - click_turf.x) * world.icon_size)]")
LAZYSET(modifiers, ICON_Y, "[(click_turf_py - click_turf.pixel_y) + ((click_turf_y - click_turf.y) * world.icon_size)]")
return click_turf
///Almost identical to the params_to_turf(), but unused (remove?)
/proc/screen_loc_to_turf(text, turf/origin, client/C)
if(!text)
return null
var/tZ = splittext(text, ",")
var/tX = splittext(tZ[1], "-")
var/tY = text2num(tX[2])
tX = splittext(tZ[2], "-")
tX = text2num(tX[2])
tZ = origin.z
var/list/actual_view = getviewsize(C ? C.view : world.view)
tX = clamp(origin.x + round(actual_view[1] / 2) - tX, 1, world.maxx)
tY = clamp(origin.y + round(actual_view[2] / 2) - tY, 1, world.maxy)
return locate(tX, tY, tZ)
///similar function to RANGE_TURFS(), but will search spiralling outwards from the center (like the above, but only turfs)
/proc/spiral_range_turfs(dist = 0, center = usr, orange = FALSE, list/outlist = list(), tick_checked)
outlist.Cut()
if(!dist)
outlist += center
return outlist
var/turf/t_center = get_turf(center)
if(!t_center)
return outlist
var/list/turf_list = outlist
var/turf/checked_turf
var/y
var/x
var/c_dist = 1
if(!orange)
turf_list += t_center
while( c_dist <= dist )
y = t_center.y + c_dist
x = t_center.x - c_dist + 1
for(x in x to t_center.x + c_dist)
checked_turf = locate(x, y, t_center.z)
if(checked_turf)
turf_list += checked_turf
y = t_center.y + c_dist - 1
x = t_center.x + c_dist
for(y in t_center.y - c_dist to y)
checked_turf = locate(x, y, t_center.z)
if(checked_turf)
turf_list += checked_turf
y = t_center.y - c_dist
x = t_center.x + c_dist - 1
for(x in t_center.x - c_dist to x)
checked_turf = locate(x, y, t_center.z)
if(checked_turf)
turf_list += checked_turf
y = t_center.y - c_dist + 1
x = t_center.x - c_dist
for(y in y to t_center.y + c_dist)
checked_turf = locate(x, y, t_center.z)
if(checked_turf)
turf_list += checked_turf
c_dist++
if(tick_checked)
CHECK_TICK
return turf_list
///Returns a random turf on the station
/proc/get_random_station_turf()
var/list/turfs = get_area_turfs(pick(GLOB.the_station_areas))
if (length(turfs))
return pick(turfs)
///Returns a random turf on the station, excludes dense turfs (like walls) and areas that have valid_territory set to FALSE
/proc/get_safe_random_station_turf(list/areas_to_pick_from = GLOB.the_station_areas)
for (var/i in 1 to 5)
var/list/turf_list = get_area_turfs(pick(areas_to_pick_from))
var/turf/target
while (turf_list.len && !target)
var/I = rand(1, turf_list.len)
var/turf/checked_turf = turf_list[I]
var/area/turf_area = get_area(checked_turf)
if(!checked_turf.density && (turf_area.area_flags & VALID_TERRITORY) && !isgroundlessturf(checked_turf))
var/clear = TRUE
for(var/obj/checked_object in checked_turf)
if(checked_object.density)
clear = FALSE
break
if(clear)
target = checked_turf
if (!target)
turf_list.Cut(I, I + 1)
if (target)
return target
/**
* Checks whether the target turf is in a valid state to accept a directional construction
* such as windows or railings.
*
* Returns FALSE if the target turf cannot accept a directional construction.
* Returns TRUE otherwise.
*
* Arguments:
* * dest_turf - The destination turf to check for existing directional constructions
* * test_dir - The prospective dir of some atom you'd like to put on this turf.
* * is_fulltile - Whether the thing you're attempting to move to this turf takes up the entire tile or whether it supports multiple movable atoms on its tile.
*/
/proc/valid_build_direction(turf/dest_turf, test_dir, is_fulltile = FALSE)
if(!dest_turf)
return FALSE
for(var/obj/turf_content in dest_turf)
if(turf_content.obj_flags & BLOCKS_CONSTRUCTION_DIR)
if(is_fulltile) // for making it so fulltile things can't be built over directional things--a special case
return FALSE
if(turf_content.dir == test_dir)
return FALSE
return TRUE
/**
* Checks whether or not a particular typepath or subtype of it is present on a turf
*
* Returns TRUE if an instance of the desired type or a subtype of it is found
* Returns FALSE if the type is not found, or if no turf is supplied
*
* Arguments:
* * location - The turf to be checked for the desired type
* * type_to_find - The typepath whose presence you are checking for
*/
/proc/is_type_on_turf(turf/location, type_to_find)
if(!location)
return FALSE
if(locate(type_to_find) in location)
return TRUE
return FALSE