Files
Bubberstation/code/__HELPERS/maths.dm
SkyratBot 3f95ebbd5e [MIRROR] Fishing, Version 1 [MDB IGNORE] (#14370)
* Fishing, Version 1 (#67691)

Adds fishing and fishing minigame.
You use fishing rod to fish.
Equipping specific bait/hook/reels will affect your success chances.
You can fish out fish,items and other things.

Fishing Equipment
Fishing rods have three slots: Bait, Reel and Hook.
Any food can be used as bait but dedicated bait makes fishing easier.
You can buy hook and line sets
New bait types:

Worms : Buy can of them at cargo (alternative acquirement method pending)
Doughballs : Use knife on flat piece of dough to get five of them.
Fishing rod types:

Basic : Print these at the lathe, nothing fancy here.
Tech: Experimental tech. Provides infinite bait
Fishing rods can also hook and reel normal items.

Equipment screen and reeling video
Fishing spots
Keep in mind this PR is meant to add the basic systems and i intend to fill these with more fish in future PR's so wait with suggestions until then.

Lavaland lava (no fish here right now, just other stuff), requires reinforced line to fish in.
Maintenance moisture traps.
Beach away mission water.
Fishing portal available for purchase from cargo - This is stopgap until we fill more spots.
Difficulty depends on fishing spot, fish type, and the fish traits and rod setup combinations.
All fish types can have specific traits, most common ones being favourite and disliked bait types/categories.

Other
Fishing catalog now lists fishing related info
New admin debug verb, fishing calculator that show probabilities with different setups so it's easier to balance this.
Fish now have average weight and size. Make sure to boast if you catch a big one.
Adds tgui mouse passthrough
Screens
Sprites:

Fishing portal sprite by @ ArcaneMusic
Other sprites by @ Mey-Ha-Zah
Bad ones by me. (Could still use better fishing minigame backgrounds)
Sounds:

https://freesound.org/people/soundscalpel.com/sounds/110393/
https://freesound.org/people/soundslikewillem/sounds/343748/

* Fishing, Version 1

Co-authored-by: AnturK <AnturK@users.noreply.github.com>
2022-06-17 00:30:40 +01:00

146 lines
5.4 KiB
Plaintext

///Calculate the angle between two movables and the west|east coordinate
/proc/get_angle(atom/movable/start, atom/movable/end)//For beams.
if(!start || !end)
return 0
var/dy =(32 * end.y + end.pixel_y) - (32 * start.y + start.pixel_y)
var/dx =(32 * end.x + end.pixel_x) - (32 * start.x + start.pixel_x)
if(!dy)
return (dx >= 0) ? 90 : 270
. = arctan(dx/dy)
if(dy < 0)
. += 180
else if(dx < 0)
. += 360
/// Angle between two arbitrary points and horizontal line same as [/proc/get_angle]
/proc/get_angle_raw(start_x, start_y, start_pixel_x, start_pixel_y, end_x, end_y, end_pixel_x, end_pixel_y)
var/dy = (32 * end_y + end_pixel_y) - (32 * start_y + start_pixel_y)
var/dx = (32 * end_x + end_pixel_x) - (32 * start_x + start_pixel_x)
if(!dy)
return (dx >= 0) ? 90 : 270
. = arctan(dx/dy)
if(dy < 0)
. += 180
else if(dx < 0)
. += 360
///for getting the angle when animating something's pixel_x and pixel_y
/proc/get_pixel_angle(y, x)
if(!y)
return (x >= 0) ? 90 : 270
. = arctan(x/y)
if(y < 0)
. += 180
else if(x < 0)
. += 360
/**
* Get a list of turfs in a line from `starting_atom` to `ending_atom`.
*
* Uses the ultra-fast [Bresenham Line-Drawing Algorithm](https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm).
*/
/proc/get_line(atom/starting_atom, atom/ending_atom)
var/current_x_step = starting_atom.x//start at x and y, then add 1 or -1 to these to get every turf from starting_atom to ending_atom
var/current_y_step = starting_atom.y
var/starting_z = starting_atom.z
var/list/line = list(get_turf(starting_atom))//get_turf(atom) is faster than locate(x, y, z)
var/x_distance = ending_atom.x - current_x_step //x distance
var/y_distance = ending_atom.y - current_y_step
var/abs_x_distance = abs(x_distance)//Absolute value of x distance
var/abs_y_distance = abs(y_distance)
var/x_distance_sign = SIGN(x_distance) //Sign of x distance (+ or -)
var/y_distance_sign = SIGN(y_distance)
var/x = abs_x_distance >> 1 //Counters for steps taken, setting to distance/2
var/y = abs_y_distance >> 1 //Bit-shifting makes me l33t. It also makes get_line() unnessecarrily fast.
if(abs_x_distance >= abs_y_distance) //x distance is greater than y
for(var/distance_counter in 0 to (abs_x_distance - 1))//It'll take abs_x_distance steps to get there
y += abs_y_distance
if(y >= abs_x_distance) //Every abs_y_distance steps, step once in y direction
y -= abs_x_distance
current_y_step += y_distance_sign
current_x_step += x_distance_sign //Step on in x direction
line += locate(current_x_step, current_y_step, starting_z)//Add the turf to the list
else
for(var/distance_counter in 0 to (abs_y_distance - 1))
x += abs_x_distance
if(x >= abs_y_distance)
x -= abs_y_distance
current_x_step += x_distance_sign
current_y_step += y_distance_sign
line += locate(current_x_step, current_y_step, starting_z)
return line
///Format a power value in W, kW, MW, or GW.
/proc/display_power(powerused)
if(powerused < 1000) //Less than a kW
return "[powerused] W"
else if(powerused < 1000000) //Less than a MW
return "[round((powerused * 0.001),0.01)] kW"
else if(powerused < 1000000000) //Less than a GW
return "[round((powerused * 0.000001),0.001)] MW"
return "[round((powerused * 0.000000001),0.0001)] GW"
///Format an energy value in J, kJ, MJ, or GJ. 1W = 1J/s.
/proc/display_joules(units)
if (units < 1000) // Less than a kJ
return "[round(units, 0.1)] J"
else if (units < 1000000) // Less than a MJ
return "[round(units * 0.001, 0.01)] kJ"
else if (units < 1000000000) // Less than a GJ
return "[round(units * 0.000001, 0.001)] MJ"
return "[round(units * 0.000000001, 0.0001)] GJ"
/proc/joules_to_energy(joules)
return joules * (1 SECONDS) / SSmachines.wait
/proc/energy_to_joules(energy_units)
return energy_units * SSmachines.wait / (1 SECONDS)
///Format an energy value measured in Power Cell units.
/proc/display_energy(units)
// APCs process every (SSmachines.wait * 0.1) seconds, and turn 1 W of
// excess power into watts when charging cells.
// With the current configuration of wait=20 and CELLRATE=0.002, this
// means that one unit is 1 kJ.
return display_joules(energy_to_joules(units) WATTS)
///chances are 1:value. anyprob(1) will always return true
/proc/anyprob(value)
return (rand(1,value)==value)
///counts the number of bits in Byond's 16-bit width field, in constant time and memory!
/proc/bit_count(bit_field)
var/temp = bit_field - ((bit_field >> 1) & 46811) - ((bit_field >> 2) & 37449) //0133333 and 0111111 respectively
temp = ((temp + (temp >> 3)) & 29127) % 63 //070707
return temp
/// Returns the name of the mathematical tuple of same length as the number arg (rounded down).
/proc/make_tuple(number)
var/static/list/units_prefix = list("", "un", "duo", "tre", "quattuor", "quin", "sex", "septen", "octo", "novem")
var/static/list/tens_prefix = list("", "decem", "vigin", "trigin", "quadragin", "quinquagin", "sexagin", "septuagin", "octogin", "nongen")
var/static/list/one_to_nine = list("monuple", "double", "triple", "quadruple", "quintuple", "sextuple", "septuple", "octuple", "nonuple")
number = round(number)
switch(number)
if(0)
return "empty tuple"
if(1 to 9)
return one_to_nine[number]
if(10 to 19)
return "[units_prefix[(number%10)+1]]decuple"
if(20 to 99)
return "[units_prefix[(number%10)+1]][tens_prefix[round((number % 100)/10)+1]]tuple"
if(100)
return "centuple"
else //It gets too tedious to use latin prefixes from here.
return "[number]-tuple"