Files
Bubberstation/code/modules/unit_tests
SkyratBot 75f28c1479 [MIRROR] venus human traps are basicmobs + ""balance"" [MDB IGNORE] (#24279)
* venus human traps are basicmobs + ""balance"" (#78749)

## About The Pull Request

theyre basicmobs now, tangling is an ability and also applies a leash
for the duration of the beam

they now have 100 HP
also when theyre not within 2 tiles range of space vines every Life tick
they take 20 damage(they have 100 max hp)
if they are in range however they heal 10 damage

theyre slightly slower too, and they deal 10-20 damage, from the
previous guaranteed 20 damage
also their attack cooldown is 0.2 seconds slower

the tangling does not automatically pull people but for the duration of
the tangle the victim is leashed to you
which means they cannot go out of range of you, so you can move
backwards to pull them closer (as seen in video)

https://github.com/tgstation/tgstation/assets/70376633/aed77f81-c564-4fcc-879e-7dd8a9b5c787

## Why It's Good For The Game

basicmob good

also fighting these dudes unprepared is a death sentence and being
caught unprepared is easy if kudzu decides to spawn in the middle of
fucking nowhere and rolls flowering, then absolutely does not listen to
the protect kudzu part and goes from the middle of nowhere to medbay to
murderbone
hopefully this should make them less proficient at shredding people and
make them actually defend kudzu instead of murderboning

## Changelog

🆑
refactor: venus human traps are basicmobs now
balance: venus human traps have 100 health
balance: venus human traps take damage out of range of kudzu, heal near
kudzu, are slightly slower, attack slower, and their damage output is
slightly more random
balance: also venus human trap tangle ability now needs you to actually
move backwards to pull victims
/🆑

---------

Co-authored-by: MrMelbert <51863163+MrMelbert@ users.noreply.github.com>
Co-authored-by: Jacquerel <hnevard@ gmail.com>

* venus human traps are basicmobs + ""balance""

* Modular paths

* Update venus.dm

* Update venus.dm

---------

Co-authored-by: jimmyl <70376633+mc-oofert@users.noreply.github.com>
Co-authored-by: MrMelbert <51863163+MrMelbert@ users.noreply.github.com>
Co-authored-by: Jacquerel <hnevard@ gmail.com>
Co-authored-by: Giz <13398309+vinylspiders@users.noreply.github.com>
2023-10-11 18:45:56 -04:00
..

Unit Tests

What is unit testing?

Unit tests are automated code to verify that parts of the game work exactly as they should. For example, a test to make sure that the amputation surgery actually amputates the limb. These are ran every time a PR is made, and thus are very helpful for preventing bugs from cropping up in your code that would've otherwise gone unnoticed. For example, would you have thought to check that beach boys would still work the same after editing pizza? If you value your time, probably not.

On their most basic level, when UNIT_TESTS is defined, all subtypes of /datum/unit_test will have their Run proc executed. From here, if Fail is called at any point, then the tests will report as failed.

How do I write one?

  1. Find a relevant file.

All unit test related code is in code/modules/unit_tests. If you are adding a new test for a surgery, for example, then you'd open surgeries.dm. If a relevant file does not exist, simply create one in this folder, then #include it in _unit_tests.dm.

  1. Create the unit test.

To make a new unit test, you simply need to define a /datum/unit_test.

For example, let's suppose that we are creating a test to make sure a proc square correctly raises inputs to the power of two. We'd start with first:

/datum/unit_test/square/Run()

This defines our new unit test, /datum/unit_test/square. Inside this function, we're then going to run through whatever we want to check. Tests provide a few assertion functions to make this easy. For now, we're going to use TEST_ASSERT_EQUAL.

/datum/unit_test/square/Run()
    TEST_ASSERT_EQUAL(square(3), 9, "square(3) did not return 9")
    TEST_ASSERT_EQUAL(square(4), 16, "square(4) did not return 16")

As you can hopefully tell, we're simply checking if the output of square matches the output we are expecting. If the test fails, it'll report the error message given as well as whatever the actual output was.

  1. Run the unit test

Open code/_compile_options.dm and uncomment the following line.

//#define UNIT_TESTS			//If this is uncommented, we do a single run though of the game setup and tear down process with unit tests in between

Then, run tgstation.dmb in Dream Daemon. Don't bother trying to connect, you won't need to. You'll be able to see the outputs of all the tests. You'll get to see which tests failed and for what reason. If they all pass, you're set!

How to think about tests

Unit tests exist to prevent bugs that would happen in a real game. Thus, they should attempt to emulate the game world wherever possible. For example, the quick swap sanity test emulates a real scenario of the bug it fixed occurring by creating a character and giving it real items. The unrecommended alternative would be to create special test-only items. This isn't a hard rule, the reagent method exposure tests create a test-only reagent for example, but do keep it in mind.

Unit tests should also be just that--testing units of code. For example, instead of having one massive test for reagents, there are instead several smaller tests for testing exposure, metabolization, etc.

The unit testing API

You can find more information about all of these from their respective doc comments, but for a brief overview:

/datum/unit_test - The base for all tests to be ran. Subtypes must override Run(). New() and Destroy() can be used for setup and teardown. To fail, use TEST_FAIL(reason).

/datum/unit_test/proc/allocate(type, ...) - Allocates an instance of the provided type with the given arguments. Is automatically destroyed when the test is over. Commonly seen in the form of var/mob/living/carbon/human/human = allocate(/mob/living/carbon/human/consistent).

TEST_FAIL(reason) - Marks a failure at this location, but does not stop the test.

TEST_ASSERT(assertion, reason) - Stops the unit test and fails if the assertion is not met. For example: TEST_ASSERT(powered(), "Machine is not powered").

TEST_ASSERT_NOTNULL(a, message) - Same as TEST_ASSERT, but checks if !isnull(a). For example: TEST_ASSERT_NOTNULL(myatom, "My atom was never set!").

TEST_ASSERT_NULL(a, message) - Same as TEST_ASSERT, but checks if isnull(a). If not, gives a helpful message showing what a was. For example: TEST_ASSERT_NULL(delme, "Delme was never cleaned up!").

TEST_ASSERT_EQUAL(a, b, message) - Same as TEST_ASSERT, but checks if a == b. If not, gives a helpful message showing what both a and b were. For example: TEST_ASSERT_EQUAL(2 + 2, 4, "The universe is falling apart before our eyes!").

TEST_ASSERT_NOTEQUAL(a, b, message) - Same as TEST_ASSERT_EQUAL, but reversed.

TEST_FOCUS(test_path) - Only run the test provided within the parameters. Useful for reducing noise. For example, if we only want to run our example square test, we can add TEST_FOCUS(/datum/unit_test/square). Should never be pushed in a pull request--you will be laughed at.

Final Notes

  • Writing tests before you attempt to fix the bug can actually speed up development a lot! It means you don't have to go in game and folllow the same exact steps manually every time. This process is known as "TDD" (test driven development). Write the test first, make sure it fails, then start work on the fix/feature, and you'll know you're done when your tests pass. If you do try this, do make sure to confirm in a non-testing environment just to double check.
  • Make sure that your tests don't accidentally call RNG functions like prob. Since RNG is seeded during tests, you may not realize you have until someone else makes a PR and the tests fail!
  • Do your best not to change the behavior of non-testing code during tests. While it may sometimes be necessary in the case of situations such as the above, it is still a slippery slope that can lead to the code you're testing being too different from the production environment to be useful.