## About The Pull Request This PR completely rewrites our embedding system in favor of embedding datum handlers which acts as containers for all embedding-related data and logic. Currently embedding logic relies on an element-component-datum triad, where elements on the items handle embedding logic, singleton datums store embedding data and components (which get assigned to ***mobs*** in whom the item embedded) handle pain and the item being ripped out. How do we access all the procs? By using comsigs as procs, which is really bad. This code was written back in 2020 when DCS was hot stuff but in hindsight this implementation was a mistake, as it heavily restricts custom embedding behaviors unless you're willing to constantly run GetComponent (bad, ugly, incarnation of evil) This PR rewrites all that logic to be handled by lazyloaded ``/datum/embedding``, which is stored similarly to current ``/datum/embed_data``. Upon being requested, it is initialized and assigned to a parent from whom all the logic is handled, from being embedded to pain and having the item ripped out. On projectiles this only handles one proc, after which it copies itself down to the shrapnel item instead and runs the chain further from there. Ideally, most embedding-related logic now should be handled purely datum-side - in most cases items should not be hooking up to themselves like they did before (unless said logic is for when the item is made sticky or smth) and instead the code should be handled by the embedding datum (see sholean grapes implementation in this PR). This should allow us to do fancy stuff like syringe guns embedding syringes into targets and injecting them that way, and fix some bugs along the way. Closes #88115 Closes #87946 Also fixed a bug with scars not displaying when examined closely from #86506 because i was in the area anyways
Unit Tests
What is unit testing?
Unit tests are automated code to verify that parts of the game work exactly as they should. For example, a test to make sure that the amputation surgery actually amputates the limb. These are ran every time a PR is made, and thus are very helpful for preventing bugs from cropping up in your code that would've otherwise gone unnoticed. For example, would you have thought to check that beach boys would still work the same after editing pizza? If you value your time, probably not.
On their most basic level, when UNIT_TESTS is defined, all subtypes of /datum/unit_test will have their Run proc executed. From here, if Fail is called at any point, then the tests will report as failed.
How do I write one?
- Find a relevant file.
All unit test related code is in code/modules/unit_tests. If you are adding a new test for a surgery, for example, then you'd open surgeries.dm. If a relevant file does not exist, simply create one in this folder, then #include it in _unit_tests.dm.
- Create the unit test.
To make a new unit test, you simply need to define a /datum/unit_test.
For example, let's suppose that we are creating a test to make sure a proc square correctly raises inputs to the power of two. We'd start with first:
/datum/unit_test/square/Run()
This defines our new unit test, /datum/unit_test/square. Inside this function, we're then going to run through whatever we want to check. Tests provide a few assertion functions to make this easy. For now, we're going to use TEST_ASSERT_EQUAL.
/datum/unit_test/square/Run()
TEST_ASSERT_EQUAL(square(3), 9, "square(3) did not return 9")
TEST_ASSERT_EQUAL(square(4), 16, "square(4) did not return 16")
As you can hopefully tell, we're simply checking if the output of square matches the output we are expecting. If the test fails, it'll report the error message given as well as whatever the actual output was.
- Run the unit test
Open code/_compile_options.dm and uncomment the following line.
//#define UNIT_TESTS //If this is uncommented, we do a single run though of the game setup and tear down process with unit tests in between
There are 3 ways to run unit tests
-
Run tgstation.dmb in Dream Daemon. Don't bother trying to connect, you won't need to. You'll be able to see the outputs of all the tests. You'll get to see which tests failed and for what reason. If they all pass, you're set!
-
Launch game from VS Code. Launch the game as normal & you will see the output of your unit tests in your fancy chat window. This is preferred as you can use the debugger to step through each line of your unit test & can use the games inbuilt debugging tools to further aid in testing
-
Use VS Code Tgstation Test Explorer Extension. This allows you to run tests without launching the game & can also run focused tests(either a single or a selected group)
How to think about tests
Unit tests exist to prevent bugs that would happen in a real game. Thus, they should attempt to emulate the game world wherever possible. For example, the quick swap sanity test emulates a real scenario of the bug it fixed occurring by creating a character and giving it real items. The unrecommended alternative would be to create special test-only items. This isn't a hard rule, the reagent method exposure tests create a test-only reagent for example, but do keep it in mind.
Unit tests should also be just that--testing units of code. For example, instead of having one massive test for reagents, there are instead several smaller tests for testing exposure, metabolization, etc.
The unit testing API
You can find more information about all of these from their respective doc comments, but for a brief overview:
/datum/unit_test - The base for all tests to be ran. Subtypes must override Run(). New() and Destroy() can be used for setup and teardown. To fail, use TEST_FAIL(reason).
/datum/unit_test/proc/allocate(type, ...) - Allocates an instance of the provided type with the given arguments. Is automatically destroyed when the test is over. Commonly seen in the form of var/mob/living/carbon/human/human = allocate(/mob/living/carbon/human/consistent).
TEST_FAIL(reason) - Marks a failure at this location, but does not stop the test.
TEST_ASSERT(assertion, reason) - Stops the unit test and fails if the assertion is not met. For example: TEST_ASSERT(powered(), "Machine is not powered").
TEST_ASSERT_NOTNULL(a, message) - Same as TEST_ASSERT, but checks if !isnull(a). For example: TEST_ASSERT_NOTNULL(myatom, "My atom was never set!").
TEST_ASSERT_NULL(a, message) - Same as TEST_ASSERT, but checks if isnull(a). If not, gives a helpful message showing what a was. For example: TEST_ASSERT_NULL(delme, "Delme was never cleaned up!").
TEST_ASSERT_EQUAL(a, b, message) - Same as TEST_ASSERT, but checks if a == b. If not, gives a helpful message showing what both a and b were. For example: TEST_ASSERT_EQUAL(2 + 2, 4, "The universe is falling apart before our eyes!").
TEST_ASSERT_NOTEQUAL(a, b, message) - Same as TEST_ASSERT_EQUAL, but reversed.
TEST_FOCUS(test_path) - Only run the test provided within the parameters. Useful for reducing noise. For example, if we only want to run our example square test, we can add TEST_FOCUS(/datum/unit_test/square). Should never be pushed in a pull request--you will be laughed at.
Final Notes
- Writing tests before you attempt to fix the bug can actually speed up development a lot! It means you don't have to go in game and folllow the same exact steps manually every time. This process is known as "TDD" (test driven development). Write the test first, make sure it fails, then start work on the fix/feature, and you'll know you're done when your tests pass. If you do try this, do make sure to confirm in a non-testing environment just to double check.
- Make sure that your tests don't accidentally call RNG functions like
prob. Since RNG is seeded during tests, you may not realize you have until someone else makes a PR and the tests fail! - Do your best not to change the behavior of non-testing code during tests. While it may sometimes be necessary in the case of situations such as the above, it is still a slippery slope that can lead to the code you're testing being too different from the production environment to be useful.