mirror of
https://github.com/Bubberstation/Bubberstation.git
synced 2025-12-12 10:42:37 +00:00
## About The Pull Request Turf references don't change so logically, turf weakrefs wouldn't change if the turf changes. By not doing this this can cause bugs: See #82886 . (This Fixes #82886) (Projectiles hold a list of weakrefs to atoms hit to determine what they have already hit. Because turf weakrefs reset, we could "hit" the same turf twice if it destroyed the turf. Old behavior - this was fine but now that they're weakrefs, we get two weakref datums in the list that point to the same ref.) Less hacky alternative to #82901 . (Closes #82901) ## Changelog 🆑 Melbert fix: Plasma cutters work again /🆑
1199 lines
50 KiB
Plaintext
1199 lines
50 KiB
Plaintext
|
|
#define MOVES_HITSCAN -1 //Not actually hitscan but close as we get without actual hitscan.
|
|
#define MUZZLE_EFFECT_PIXEL_INCREMENT 17 //How many pixels to move the muzzle flash up so your character doesn't look like they're shitting out lasers.
|
|
|
|
/obj/projectile
|
|
name = "projectile"
|
|
icon = 'icons/obj/weapons/guns/projectiles.dmi'
|
|
icon_state = "bullet"
|
|
density = FALSE
|
|
anchored = TRUE
|
|
mouse_opacity = MOUSE_OPACITY_TRANSPARENT
|
|
movement_type = FLYING
|
|
wound_bonus = CANT_WOUND // can't wound by default
|
|
generic_canpass = FALSE
|
|
blocks_emissive = EMISSIVE_BLOCK_GENERIC
|
|
layer = MOB_LAYER
|
|
//The sound this plays on impact.
|
|
var/hitsound = 'sound/weapons/pierce.ogg'
|
|
var/hitsound_wall = ""
|
|
|
|
resistance_flags = LAVA_PROOF | FIRE_PROOF | UNACIDABLE | ACID_PROOF
|
|
var/def_zone = "" //Aiming at
|
|
var/atom/movable/firer = null//Who shot it
|
|
var/datum/fired_from = null // the thing that the projectile was fired from (gun, turret, spell)
|
|
var/suppressed = FALSE //Attack message
|
|
var/yo = null
|
|
var/xo = null
|
|
var/atom/original = null // the original target clicked
|
|
var/turf/starting = null // the projectile's starting turf
|
|
var/p_x = 16
|
|
var/p_y = 16 // the pixel location of the tile that the player clicked. Default is the center
|
|
|
|
//Fired processing vars
|
|
var/fired = FALSE //Have we been fired yet
|
|
var/paused = FALSE //for suspending the projectile midair
|
|
var/last_projectile_move = 0
|
|
var/last_process = 0
|
|
var/time_offset = 0
|
|
var/datum/point/vector/trajectory
|
|
var/trajectory_ignore_forcemove = FALSE //instructs forceMove to NOT reset our trajectory to the new location!
|
|
/// We already impacted these things, do not impact them again. Used to make sure we can pierce things we want to pierce. Lazylist, typecache style (object = TRUE) for performance.
|
|
var/list/impacted = list()
|
|
/// If TRUE, we can hit our firer.
|
|
var/ignore_source_check = FALSE
|
|
/// We are flagged PHASING temporarily to not stop moving when we Bump something but want to keep going anyways.
|
|
var/temporary_unstoppable_movement = FALSE
|
|
|
|
/** PROJECTILE PIERCING
|
|
* WARNING:
|
|
* Projectile piercing MUST be done using these variables.
|
|
* Ordinary passflags will result in can_hit_target being false unless directly clicked on - similar to projectile_phasing but without even going to process_hit.
|
|
* The two flag variables below both use pass flags.
|
|
* In the context of LETPASStHROW, it means the projectile will ignore things that are currently "in the air" from a throw.
|
|
*
|
|
* Also, projectiles sense hits using Bump(), and then pierce them if necessary.
|
|
* They simply do not follow conventional movement rules.
|
|
* NEVER flag a projectile as PHASING movement type.
|
|
* If you so badly need to make one go through *everything*, override check_pierce() for your projectile to always return PROJECTILE_PIERCE_PHASE/HIT.
|
|
*/
|
|
/// The "usual" flags of pass_flags is used in that can_hit_target ignores these unless they're specifically targeted/clicked on. This behavior entirely bypasses process_hit if triggered, rather than phasing which uses prehit_pierce() to check.
|
|
pass_flags = PASSTABLE
|
|
/// If FALSE, allow us to hit something directly targeted/clicked/whatnot even if we're able to phase through it
|
|
var/phasing_ignore_direct_target = FALSE
|
|
/// Bitflag for things the projectile should just phase through entirely - No hitting unless direct target and [phasing_ignore_direct_target] is FALSE. Uses pass_flags flags.
|
|
var/projectile_phasing = NONE
|
|
/// Bitflag for things the projectile should hit, but pierce through without deleting itself. Defers to projectile_phasing. Uses pass_flags flags.
|
|
var/projectile_piercing = NONE
|
|
/// number of times we've pierced something. Incremented BEFORE bullet_act and on_hit proc!
|
|
var/pierces = 0
|
|
|
|
/// If objects are below this layer, we pass through them
|
|
var/hit_threshhold = PROJECTILE_HIT_THRESHHOLD_LAYER
|
|
|
|
/// During each fire of SSprojectiles, the number of deciseconds since the last fire of SSprojectiles
|
|
/// is divided by this var, and the result truncated to the next lowest integer is
|
|
/// the number of times the projectile's `pixel_move` proc will be called.
|
|
var/speed = 0.8
|
|
|
|
/// This var is multiplied by SSprojectiles.global_pixel_speed to get how many pixels
|
|
/// the projectile moves during each iteration of the movement loop
|
|
///
|
|
/// If you want to make a fast-moving projectile, you should keep this equal to 1 and
|
|
/// reduce the value of `speed`. If you want to make a slow-moving projectile, make
|
|
/// `speed` a modest value like 1 and set this to a low value like 0.2.
|
|
var/pixel_speed_multiplier = 1
|
|
|
|
var/Angle = 0
|
|
var/original_angle = 0 //Angle at firing
|
|
var/nondirectional_sprite = FALSE //Set TRUE to prevent projectiles from having their sprites rotated based on firing angle
|
|
var/spread = 0 //amount (in degrees) of projectile spread
|
|
animate_movement = NO_STEPS //Use SLIDE_STEPS in conjunction with legacy
|
|
/// how many times we've ricochet'd so far (instance variable, not a stat)
|
|
var/ricochets = 0
|
|
/// how many times we can ricochet max
|
|
var/ricochets_max = 0
|
|
/// how many times we have to ricochet min (unless we hit an atom we can ricochet off)
|
|
var/min_ricochets = 0
|
|
/// 0-100 (or more, I guess), the base chance of ricocheting, before being modified by the atom we shoot and our chance decay
|
|
var/ricochet_chance = 0
|
|
/// 0-1 (or more, I guess) multiplier, the ricochet_chance is modified by multiplying this after each ricochet
|
|
var/ricochet_decay_chance = 0.7
|
|
/// 0-1 (or more, I guess) multiplier, the projectile's damage is modified by multiplying this after each ricochet
|
|
var/ricochet_decay_damage = 0.7
|
|
/// On ricochet, if nonzero, we consider all mobs within this range of our projectile at the time of ricochet to home in on like Revolver Ocelot, as governed by ricochet_auto_aim_angle
|
|
var/ricochet_auto_aim_range = 0
|
|
/// On ricochet, if ricochet_auto_aim_range is nonzero, we'll consider any mobs within this range of the normal angle of incidence to home in on, higher = more auto aim
|
|
var/ricochet_auto_aim_angle = 30
|
|
/// the angle of impact must be within this many degrees of the struck surface, set to 0 to allow any angle
|
|
var/ricochet_incidence_leeway = 40
|
|
/// Can our ricochet autoaim hit our firer?
|
|
var/ricochet_shoots_firer = TRUE
|
|
|
|
///If the object being hit can pass ths damage on to something else, it should not do it for this bullet
|
|
var/force_hit = FALSE
|
|
|
|
//Hitscan
|
|
var/hitscan = FALSE //Whether this is hitscan. If it is, speed is basically ignored.
|
|
var/list/beam_segments //assoc list of datum/point or datum/point/vector, start = end. Used for hitscan effect generation.
|
|
/// Last turf an angle was changed in for hitscan projectiles.
|
|
var/turf/last_angle_set_hitscan_store
|
|
var/datum/point/beam_index
|
|
var/turf/hitscan_last //last turf touched during hitscanning.
|
|
var/tracer_type
|
|
var/muzzle_type
|
|
var/impact_type
|
|
|
|
//Fancy hitscan lighting effects!
|
|
var/hitscan_light_intensity = 1.5
|
|
var/hitscan_light_range = 0.75
|
|
var/hitscan_light_color_override
|
|
var/muzzle_flash_intensity = 3
|
|
var/muzzle_flash_range = 1.5
|
|
var/muzzle_flash_color_override
|
|
var/impact_light_intensity = 3
|
|
var/impact_light_range = 2
|
|
var/impact_light_color_override
|
|
|
|
//Homing
|
|
var/homing = FALSE
|
|
var/atom/homing_target
|
|
var/homing_turn_speed = 10 //Angle per tick.
|
|
var/homing_inaccuracy_min = 0 //in pixels for these. offsets are set once when setting target.
|
|
var/homing_inaccuracy_max = 0
|
|
var/homing_offset_x = 0
|
|
var/homing_offset_y = 0
|
|
|
|
var/damage = 10
|
|
var/damage_type = BRUTE //BRUTE, BURN, TOX, OXY are the only things that should be in here
|
|
|
|
///Defines what armor to use when it hits things. Must be set to bullet, laser, energy, or bomb
|
|
var/armor_flag = BULLET
|
|
///How much armor this projectile pierces.
|
|
var/armour_penetration = 0
|
|
///Whether or not our bullet lacks penetrative power, and is easily stopped by armor.
|
|
var/weak_against_armour = FALSE
|
|
var/projectile_type = /obj/projectile
|
|
var/range = 50 //This will de-increment every step. When 0, it will deletze the projectile.
|
|
var/decayedRange //stores original range
|
|
var/reflect_range_decrease = 5 //amount of original range that falls off when reflecting, so it doesn't go forever
|
|
var/reflectable = NONE // Can it be reflected or not?
|
|
|
|
// Status effects applied on hit
|
|
var/stun = 0 SECONDS
|
|
var/knockdown = 0 SECONDS
|
|
var/paralyze = 0 SECONDS
|
|
var/immobilize = 0 SECONDS
|
|
var/unconscious = 0 SECONDS
|
|
/// Seconds of blurry eyes applied on projectile hit
|
|
var/eyeblur = 0 SECONDS
|
|
/// Drowsiness applied on projectile hit
|
|
var/drowsy = 0 SECONDS
|
|
/// Jittering applied on projectile hit
|
|
var/jitter = 0 SECONDS
|
|
/// Extra stamina damage applied on projectile hit (in addition to the main damage)
|
|
var/stamina = 0
|
|
/// Stuttering applied on projectile hit
|
|
var/stutter = 0 SECONDS
|
|
/// Slurring applied on projectile hit
|
|
var/slur = 0 SECONDS
|
|
|
|
var/dismemberment = 0 //The higher the number, the greater the bonus to dismembering. 0 will not dismember at all.
|
|
var/catastropic_dismemberment = FALSE //If TRUE, this projectile deals its damage to the chest if it dismembers a limb.
|
|
var/impact_effect_type //what type of impact effect to show when hitting something
|
|
var/log_override = FALSE //is this type spammed enough to not log? (KAs)
|
|
/// If true, the projectile won't cause any logging. Used for hallucinations and shit.
|
|
var/do_not_log = FALSE
|
|
/// We ignore mobs with these factions.
|
|
var/list/ignored_factions
|
|
|
|
///If defined, on hit we create an item of this type then call hitby() on the hit target with this, mainly used for embedding items (bullets) in targets
|
|
var/shrapnel_type
|
|
///If we have a shrapnel_type defined, these embedding stats will be passed to the spawned shrapnel type, which will roll for embedding on the target
|
|
var/list/embedding
|
|
///If TRUE, hit mobs even if they're on the floor and not our target
|
|
var/hit_prone_targets = FALSE
|
|
///For what kind of brute wounds we're rolling for, if we're doing such a thing. Lasers obviously don't care since they do burn instead.
|
|
var/sharpness = NONE
|
|
///How much we want to drop damage per tile as it travels through the air
|
|
var/damage_falloff_tile
|
|
///How much we want to drop stamina damage (defined by the stamina variable) per tile as it travels through the air
|
|
var/stamina_falloff_tile
|
|
///How much we want to drop both wound_bonus and bare_wound_bonus (to a minimum of 0 for the latter) per tile, for falloff purposes
|
|
var/wound_falloff_tile
|
|
///How much we want to drop the embed_chance value, if we can embed, per tile, for falloff purposes
|
|
var/embed_falloff_tile
|
|
var/static/list/projectile_connections = list(
|
|
COMSIG_ATOM_ENTERED = PROC_REF(on_entered),
|
|
COMSIG_ATOM_ATTACK_HAND = PROC_REF(attempt_parry),
|
|
)
|
|
/// If true directly targeted turfs can be hit
|
|
var/can_hit_turfs = FALSE
|
|
/// If this projectile has been parried before
|
|
var/parried = FALSE
|
|
|
|
/obj/projectile/Initialize(mapload)
|
|
. = ..()
|
|
decayedRange = range
|
|
if(embedding)
|
|
updateEmbedding()
|
|
AddElement(/datum/element/connect_loc, projectile_connections)
|
|
|
|
/obj/projectile/proc/Range()
|
|
range--
|
|
if(wound_bonus != CANT_WOUND)
|
|
wound_bonus += wound_falloff_tile
|
|
bare_wound_bonus = max(0, bare_wound_bonus + wound_falloff_tile)
|
|
if(embedding)
|
|
embedding["embed_chance"] += embed_falloff_tile
|
|
if(damage_falloff_tile && damage >= 0)
|
|
damage += damage_falloff_tile
|
|
if(stamina_falloff_tile && stamina >= 0)
|
|
stamina += stamina_falloff_tile
|
|
|
|
SEND_SIGNAL(src, COMSIG_PROJECTILE_RANGE)
|
|
if(range <= 0 && loc)
|
|
on_range()
|
|
|
|
if(damage_falloff_tile && damage <= 0 || stamina_falloff_tile && stamina <= 0)
|
|
on_range()
|
|
|
|
/obj/projectile/proc/on_range() //if we want there to be effects when they reach the end of their range
|
|
SEND_SIGNAL(src, COMSIG_PROJECTILE_RANGE_OUT)
|
|
qdel(src)
|
|
|
|
/// Returns the string form of the def_zone we have hit.
|
|
/mob/living/proc/check_hit_limb_zone_name(hit_zone)
|
|
if(has_limbs)
|
|
return hit_zone
|
|
|
|
/mob/living/carbon/check_hit_limb_zone_name(hit_zone)
|
|
if(get_bodypart(hit_zone))
|
|
return hit_zone
|
|
else //when a limb is missing the damage is actually passed to the chest
|
|
return BODY_ZONE_CHEST
|
|
|
|
/**
|
|
* Called when the projectile hits something
|
|
*
|
|
* By default parent call will always return [BULLET_ACT_HIT] (unless qdeleted)
|
|
* so it is save to assume a successful hit in children (though not necessarily successfully damaged - it could've been blocked)
|
|
*
|
|
* Arguments
|
|
* * target - thing hit
|
|
* * blocked - percentage of hit blocked (0 to 100)
|
|
* * pierce_hit - boolean, are we piercing through or regular hitting
|
|
*
|
|
* Returns
|
|
* * Returns [BULLET_ACT_HIT] if we hit something. Default return value.
|
|
* * Returns [BULLET_ACT_BLOCK] if we were hit but sustained no effects (blocked it). Note, Being "blocked" =/= "blocked is 100".
|
|
* * Returns [BULLET_ACT_FORCE_PIERCE] to have the projectile keep going instead of "hitting", as if we were not hit at all.
|
|
*/
|
|
/obj/projectile/proc/on_hit(atom/target, blocked = 0, pierce_hit)
|
|
SHOULD_CALL_PARENT(TRUE)
|
|
|
|
// i know that this is probably more with wands and gun mods in mind, but it's a bit silly that the projectile on_hit signal doesn't ping the projectile itself.
|
|
// maybe we care what the projectile thinks! See about combining these via args some time when it's not 5AM
|
|
var/hit_limb_zone
|
|
if(isliving(target))
|
|
var/mob/living/L = target
|
|
hit_limb_zone = L.check_hit_limb_zone_name(def_zone)
|
|
if(fired_from)
|
|
SEND_SIGNAL(fired_from, COMSIG_PROJECTILE_ON_HIT, firer, target, Angle, hit_limb_zone, blocked)
|
|
SEND_SIGNAL(src, COMSIG_PROJECTILE_SELF_ON_HIT, firer, target, Angle, hit_limb_zone, blocked)
|
|
|
|
if(QDELETED(src)) // in case one of the above signals deleted the projectile for whatever reason
|
|
return BULLET_ACT_BLOCK
|
|
var/turf/target_turf = get_turf(target)
|
|
|
|
var/hitx
|
|
var/hity
|
|
if(target == original)
|
|
hitx = target.pixel_x + p_x - 16
|
|
hity = target.pixel_y + p_y - 16
|
|
else
|
|
hitx = target.pixel_x + rand(-8, 8)
|
|
hity = target.pixel_y + rand(-8, 8)
|
|
|
|
if(damage > 0 && (damage_type == BRUTE || damage_type == BURN) && iswallturf(target_turf) && prob(75))
|
|
var/turf/closed/wall/target_wall = target_turf
|
|
if(impact_effect_type && !hitscan)
|
|
new impact_effect_type(target_wall, hitx, hity)
|
|
|
|
target_wall.add_dent(WALL_DENT_SHOT, hitx, hity)
|
|
|
|
return BULLET_ACT_HIT
|
|
|
|
if(!isliving(target))
|
|
if(impact_effect_type && !hitscan)
|
|
new impact_effect_type(target_turf, hitx, hity)
|
|
if(isturf(target) && hitsound_wall)
|
|
var/volume = clamp(vol_by_damage() + 20, 0, 100)
|
|
if(suppressed)
|
|
volume = 5
|
|
playsound(loc, hitsound_wall, volume, TRUE, -1)
|
|
return BULLET_ACT_HIT
|
|
|
|
var/mob/living/living_target = target
|
|
|
|
if(blocked != 100) // not completely blocked
|
|
var/obj/item/bodypart/hit_bodypart = living_target.get_bodypart(hit_limb_zone)
|
|
if (damage && damage_type == BRUTE)
|
|
if (living_target.blood_volume && (isnull(hit_bodypart) || hit_bodypart.can_bleed()))
|
|
var/splatter_dir = dir
|
|
if(starting)
|
|
splatter_dir = get_dir(starting, target_turf)
|
|
if(isalien(living_target))
|
|
new /obj/effect/temp_visual/dir_setting/bloodsplatter/xenosplatter(target_turf, splatter_dir)
|
|
else
|
|
new /obj/effect/temp_visual/dir_setting/bloodsplatter(target_turf, splatter_dir)
|
|
if(prob(33))
|
|
living_target.add_splatter_floor(target_turf)
|
|
else if (hit_bodypart?.biological_state & (BIO_METAL|BIO_WIRED))
|
|
var/random_damage_mult = RANDOM_DECIMAL(0.85, 1.15) // SOMETIMES you can get more or less sparks
|
|
var/damage_dealt = ((damage / (1 - (blocked / 100))) * random_damage_mult)
|
|
|
|
var/spark_amount = round((damage_dealt / PROJECTILE_DAMAGE_PER_ROBOTIC_SPARK))
|
|
if (spark_amount > 0)
|
|
do_sparks(spark_amount, FALSE, living_target)
|
|
|
|
else if(impact_effect_type && !hitscan)
|
|
new impact_effect_type(target_turf, hitx, hity)
|
|
|
|
var/organ_hit_text = ""
|
|
if(hit_limb_zone)
|
|
organ_hit_text = " in \the [parse_zone(hit_limb_zone)]"
|
|
if(suppressed == SUPPRESSED_VERY)
|
|
playsound(loc, hitsound, 5, TRUE, -1)
|
|
else if(suppressed)
|
|
playsound(loc, hitsound, 5, TRUE, -1)
|
|
to_chat(living_target, span_userdanger("You're shot by \a [src][organ_hit_text]!"))
|
|
else
|
|
if(hitsound)
|
|
var/volume = vol_by_damage()
|
|
playsound(src, hitsound, volume, TRUE, -1)
|
|
living_target.visible_message(span_danger("[living_target] is hit by \a [src][organ_hit_text]!"), \
|
|
span_userdanger("You're hit by \a [src][organ_hit_text]!"), null, COMBAT_MESSAGE_RANGE)
|
|
if(living_target.is_blind())
|
|
to_chat(living_target, span_userdanger("You feel something hit you[organ_hit_text]!"))
|
|
|
|
var/reagent_note
|
|
if(reagents?.reagent_list)
|
|
reagent_note = "REAGENTS: [pretty_string_from_reagent_list(reagents.reagent_list)]"
|
|
|
|
if(ismob(firer) && !do_not_log)
|
|
log_combat(firer, living_target, "shot", src, reagent_note)
|
|
return BULLET_ACT_HIT
|
|
|
|
if(isvehicle(firer))
|
|
var/obj/vehicle/firing_vehicle = firer
|
|
|
|
var/list/logging_mobs = firing_vehicle.return_controllers_with_flag(VEHICLE_CONTROL_EQUIPMENT)
|
|
if(!LAZYLEN(logging_mobs))
|
|
logging_mobs = firing_vehicle.return_drivers()
|
|
if(!do_not_log)
|
|
for(var/mob/logged_mob as anything in logging_mobs)
|
|
log_combat(logged_mob, living_target, "shot", src, "from inside [firing_vehicle][logging_mobs.len > 1 ? " with multiple occupants" : null][reagent_note ? " and contained [reagent_note]" : null]")
|
|
return BULLET_ACT_HIT
|
|
if(!do_not_log)
|
|
living_target.log_message("has been shot by [firer] with [src][reagent_note ? " containing [reagent_note]" : null]", LOG_ATTACK, color="orange")
|
|
return BULLET_ACT_HIT
|
|
|
|
/obj/projectile/proc/vol_by_damage()
|
|
if(src.damage)
|
|
return clamp((src.damage) * 0.67, 30, 100)// Multiply projectile damage by 0.67, then CLAMP the value between 30 and 100
|
|
else
|
|
return 50 //if the projectile doesn't do damage, play its hitsound at 50% volume
|
|
|
|
/obj/projectile/proc/on_ricochet(atom/A)
|
|
if(!ricochet_auto_aim_angle || !ricochet_auto_aim_range)
|
|
return
|
|
|
|
var/mob/living/unlucky_sob
|
|
var/best_angle = ricochet_auto_aim_angle
|
|
if(firer && HAS_TRAIT(firer, TRAIT_NICE_SHOT))
|
|
best_angle += NICE_SHOT_RICOCHET_BONUS
|
|
for(var/mob/living/L in range(ricochet_auto_aim_range, src.loc))
|
|
if(L.stat == DEAD || !is_in_sight(src, L) || (!ricochet_shoots_firer && L == firer))
|
|
continue
|
|
var/our_angle = abs(closer_angle_difference(Angle, get_angle(src.loc, L.loc)))
|
|
if(our_angle < best_angle)
|
|
best_angle = our_angle
|
|
unlucky_sob = L
|
|
|
|
if(unlucky_sob)
|
|
set_angle(get_angle(src, unlucky_sob.loc))
|
|
|
|
/obj/projectile/proc/store_hitscan_collision(datum/point/point_cache)
|
|
beam_segments[beam_index] = point_cache
|
|
beam_index = point_cache
|
|
beam_segments[beam_index] = null
|
|
|
|
/obj/projectile/Bump(atom/A)
|
|
SEND_SIGNAL(src, COMSIG_MOVABLE_BUMP, A)
|
|
if(!can_hit_target(A, A == original, TRUE, TRUE))
|
|
return
|
|
Impact(A)
|
|
|
|
/// Signal proc for when a mob attempts to attack this projectile or the turf it's on with an empty hand.
|
|
/obj/projectile/proc/attempt_parry(datum/source, mob/user, list/modifiers)
|
|
SIGNAL_HANDLER
|
|
|
|
if(parried)
|
|
return FALSE
|
|
|
|
if(SEND_SIGNAL(user, COMSIG_LIVING_PROJECTILE_PARRYING, src) & ALLOW_PARRY)
|
|
on_parry(user, modifiers)
|
|
return TRUE
|
|
|
|
return FALSE
|
|
|
|
|
|
/// Called when a mob with PARRY_TRAIT clicks on this projectile or the tile its on, reflecting the projectile within 7 degrees and increasing the bullet's stats.
|
|
/obj/projectile/proc/on_parry(mob/user, list/modifiers)
|
|
if(SEND_SIGNAL(user, COMSIG_LIVING_PROJECTILE_PARRIED, src) & INTERCEPT_PARRY_EFFECTS)
|
|
return
|
|
|
|
parried = TRUE
|
|
set_angle(dir2angle(user.dir) + rand(-3, 3))
|
|
firer = user
|
|
speed *= 0.8 // Go 20% faster when parried
|
|
damage *= 1.15 // And do 15% more damage
|
|
add_atom_colour(COLOR_RED_LIGHT, TEMPORARY_COLOUR_PRIORITY)
|
|
|
|
|
|
/**
|
|
* Called when the projectile hits something
|
|
* This can either be from it bumping something,
|
|
* or it passing over a turf/being crossed and scanning that there is infact
|
|
* a valid target it needs to hit.
|
|
* This target isn't however necessarily WHAT it hits
|
|
* that is determined by process_hit and select_target.
|
|
*
|
|
* Furthermore, this proc shouldn't check can_hit_target - this should only be called if can hit target is already checked.
|
|
* Also, we select_target to find what to process_hit first.
|
|
*/
|
|
/obj/projectile/proc/Impact(atom/A)
|
|
if(!trajectory)
|
|
qdel(src)
|
|
return FALSE
|
|
if(impacted[A.weak_reference]) // NEVER doublehit
|
|
return FALSE
|
|
var/datum/point/point_cache = trajectory.copy_to()
|
|
var/turf/T = get_turf(A)
|
|
if(ricochets < ricochets_max && check_ricochet_flag(A) && check_ricochet(A))
|
|
ricochets++
|
|
if(A.handle_ricochet(src))
|
|
on_ricochet(A)
|
|
impacted = list() // Shoot a x-ray laser at a pair of mirrors I dare you
|
|
ignore_source_check = TRUE // Firer is no longer immune
|
|
decayedRange = max(0, decayedRange - reflect_range_decrease)
|
|
ricochet_chance *= ricochet_decay_chance
|
|
damage *= ricochet_decay_damage
|
|
stamina *= ricochet_decay_damage
|
|
range = decayedRange
|
|
if(hitscan)
|
|
store_hitscan_collision(point_cache)
|
|
return TRUE
|
|
|
|
if(!HAS_TRAIT(src, TRAIT_ALWAYS_HIT_ZONE))
|
|
var/distance = get_dist(T, starting) // Get the distance between the turf shot from and the mob we hit and use that for the calculations.
|
|
def_zone = ran_zone(def_zone, max(100-(7*distance), 5)) //Lower accurancy/longer range tradeoff. 7 is a balanced number to use.
|
|
|
|
return process_hit(T, select_target(T, A, A), A) // SELECT TARGET FIRST!
|
|
|
|
/**
|
|
* The primary workhorse proc of projectile impacts.
|
|
* This is a RECURSIVE call - process_hit is called on the first selected target, and then repeatedly called if the projectile still hasn't been deleted.
|
|
*
|
|
* Order of operations:
|
|
* 1. Checks if we are deleted, or if we're somehow trying to hit a null, in which case, bail out
|
|
* 2. Adds the thing we're hitting to impacted so we can make sure we don't doublehit
|
|
* 3. Checks piercing - stores this.
|
|
* Afterwards:
|
|
* Hit and delete, hit without deleting and pass through, pass through without hitting, or delete without hitting depending on result
|
|
* If we're going through without hitting, find something else to hit if possible and recurse, set unstoppable movement to true
|
|
* If we're deleting without hitting, delete and return
|
|
* Otherwise, send signal of COMSIG_PROJECTILE_PREHIT to target
|
|
* Then, hit, deleting ourselves if necessary.
|
|
* @params
|
|
* T - Turf we're on/supposedly hitting
|
|
* target - target we're hitting
|
|
* bumped - target we originally bumped. it's here to ensure that if something blocks our projectile by means of Cross() failure, we hit it
|
|
* even if it is not dense.
|
|
* hit_something - only should be set by recursive calling by this proc - tracks if we hit something already
|
|
*
|
|
* Returns if we hit something.
|
|
*/
|
|
/obj/projectile/proc/process_hit(turf/T, atom/target, atom/bumped, hit_something = FALSE)
|
|
// 1.
|
|
if(QDELETED(src) || !T || !target)
|
|
return
|
|
// 2.
|
|
impacted[WEAKREF(target)] = TRUE //hash lookup > in for performance in hit-checking
|
|
// 3.
|
|
var/mode = prehit_pierce(target)
|
|
if(mode == PROJECTILE_DELETE_WITHOUT_HITTING)
|
|
qdel(src)
|
|
return hit_something
|
|
else if(mode == PROJECTILE_PIERCE_PHASE)
|
|
if(!(movement_type & PHASING))
|
|
temporary_unstoppable_movement = TRUE
|
|
movement_type |= PHASING
|
|
return process_hit(T, select_target(T, target, bumped), bumped, hit_something) // try to hit something else
|
|
// at this point we are going to hit the thing
|
|
// in which case send signal to it
|
|
if (SEND_SIGNAL(target, COMSIG_PROJECTILE_PREHIT, args, src) & PROJECTILE_INTERRUPT_HIT)
|
|
qdel(src)
|
|
return BULLET_ACT_BLOCK
|
|
if(mode == PROJECTILE_PIERCE_HIT)
|
|
++pierces
|
|
hit_something = TRUE
|
|
var/result = target.bullet_act(src, def_zone, mode == PROJECTILE_PIERCE_HIT)
|
|
if((result == BULLET_ACT_FORCE_PIERCE) || (mode == PROJECTILE_PIERCE_HIT))
|
|
if(!(movement_type & PHASING))
|
|
temporary_unstoppable_movement = TRUE
|
|
movement_type |= PHASING
|
|
return process_hit(T, select_target(T, target, bumped), bumped, TRUE)
|
|
qdel(src)
|
|
return hit_something
|
|
|
|
/**
|
|
* Selects a target to hit from a turf
|
|
*
|
|
* @params
|
|
* T - The turf
|
|
* target - The "preferred" atom to hit, usually what we Bumped() first.
|
|
* bumped - used to track if something is the reason we impacted in the first place.
|
|
* If set, this atom is always treated as dense by can_hit_target.
|
|
*
|
|
* Priority:
|
|
* 0. Anything that is already in impacted is ignored no matter what. Furthermore, in any bracket, if the target atom parameter is in it, that's hit first.
|
|
* Furthermore, can_hit_target is always checked. This (entire proc) is PERFORMANCE OVERHEAD!! But, it shouldn't be ""too"" bad and I frankly don't have a better *generic non snowflakey* way that I can think of right now at 3 AM.
|
|
* FURTHERMORE, mobs/objs have a density check from can_hit_target - to hit non dense objects over a turf, you must click on them, same for mobs that usually wouldn't get hit.
|
|
* 1. Special check on what we bumped to see if it's a border object that intercepts hitting anything behind it
|
|
* 2. The thing originally aimed at/clicked on
|
|
* 3. Mobs - picks lowest buckled mob to prevent scarp piggybacking memes
|
|
* 4. Objs
|
|
* 5. Turf
|
|
* 6. Nothing
|
|
*/
|
|
/obj/projectile/proc/select_target(turf/our_turf, atom/target, atom/bumped)
|
|
// 1. special bumped border object check
|
|
if((bumped?.flags_1 & ON_BORDER_1) && can_hit_target(bumped, original == bumped, FALSE, TRUE))
|
|
return bumped
|
|
// 2. original
|
|
if(can_hit_target(original, TRUE, FALSE, original == bumped))
|
|
return original
|
|
var/list/atom/considering = list() // let's define this ONCE
|
|
// 3. mobs
|
|
for(var/mob/living/iter_possible_target in our_turf)
|
|
if(can_hit_target(iter_possible_target, iter_possible_target == original, TRUE, iter_possible_target == bumped))
|
|
considering |= iter_possible_target
|
|
if(length(considering))
|
|
return pick(considering)
|
|
// 4. objs and other dense things
|
|
for(var/i in our_turf)
|
|
if(can_hit_target(i, i == original, TRUE, i == bumped))
|
|
considering += i
|
|
if(length(considering))
|
|
return pick(considering)
|
|
// 5. turf
|
|
if(can_hit_target(our_turf, our_turf == original, TRUE, our_turf == bumped))
|
|
return our_turf
|
|
// 6. nothing
|
|
// (returns null)
|
|
|
|
//Returns true if the target atom is on our current turf and above the right layer
|
|
//If direct target is true it's the originally clicked target.
|
|
/obj/projectile/proc/can_hit_target(atom/target, direct_target = FALSE, ignore_loc = FALSE, cross_failed = FALSE)
|
|
if(QDELETED(target) || impacted[target.weak_reference])
|
|
return FALSE
|
|
if(!ignore_loc && (loc != target.loc) && !(can_hit_turfs && direct_target && loc == target))
|
|
return FALSE
|
|
// if pass_flags match, pass through entirely - unless direct target is set.
|
|
if((target.pass_flags_self & pass_flags) && !direct_target)
|
|
return FALSE
|
|
if(HAS_TRAIT(target, TRAIT_UNHITTABLE_BY_PROJECTILES))
|
|
return FALSE
|
|
if(!ignore_source_check && firer)
|
|
var/mob/M = firer
|
|
if((target == firer) || ((target == firer.loc) && ismecha(firer.loc)) || (target in firer.buckled_mobs) || (istype(M) && (M.buckled == target)))
|
|
return FALSE
|
|
if(ignored_factions?.len && ismob(target) && !direct_target)
|
|
var/mob/target_mob = target
|
|
if(faction_check(target_mob.faction, ignored_factions))
|
|
return FALSE
|
|
if(target.density || cross_failed) //This thing blocks projectiles, hit it regardless of layer/mob stuns/etc.
|
|
return TRUE
|
|
if(!isliving(target))
|
|
if(isturf(target)) // non dense turfs
|
|
return can_hit_turfs && direct_target
|
|
if(target.layer < hit_threshhold)
|
|
return FALSE
|
|
else if(!direct_target) // non dense objects do not get hit unless specifically clicked
|
|
return FALSE
|
|
else
|
|
var/mob/living/living_target = target
|
|
if(direct_target)
|
|
return TRUE
|
|
if(living_target.stat == DEAD)
|
|
return FALSE
|
|
if(HAS_TRAIT(living_target, TRAIT_IMMOBILIZED) && HAS_TRAIT(living_target, TRAIT_FLOORED) && HAS_TRAIT(living_target, TRAIT_HANDS_BLOCKED))
|
|
return FALSE
|
|
if(!hit_prone_targets)
|
|
var/mob/living/buckled_to = living_target.lowest_buckled_mob()
|
|
if(!buckled_to.density) // Will just be us if we're not buckled to another mob
|
|
return FALSE
|
|
if(living_target.body_position != LYING_DOWN)
|
|
return TRUE
|
|
return TRUE
|
|
|
|
/**
|
|
* Scan if we should hit something and hit it if we need to
|
|
* The difference between this and handling in Impact is
|
|
* In this we strictly check if we need to Impact() something in specific
|
|
* If we do, we do
|
|
* We don't even check if it got hit already - Impact() does that
|
|
* In impact there's more code for selecting WHAT to hit
|
|
* So this proc is more of checking if we should hit something at all BY having an atom cross us.
|
|
*/
|
|
/obj/projectile/proc/scan_crossed_hit(atom/movable/A)
|
|
if(can_hit_target(A, direct_target = (A == original)))
|
|
Impact(A)
|
|
|
|
/**
|
|
* Scans if we should hit something on the turf we just moved to if we haven't already
|
|
*
|
|
* This proc is a little high in overhead but allows us to not snowflake CanPass in living and other things.
|
|
*/
|
|
/obj/projectile/proc/scan_moved_turf()
|
|
// Optimally, we scan: mobs --> objs --> turf for impact
|
|
// but, overhead is a thing and 2 for loops every time it moves is a no-go.
|
|
// realistically, since we already do select_target in impact, we can not do that
|
|
// and hope projectiles get refactored again in the future to have a less stupid impact detection system
|
|
// that hopefully won't also involve a ton of overhead
|
|
if(can_hit_target(original, TRUE, FALSE))
|
|
Impact(original) // try to hit thing clicked on
|
|
// else, try to hit mobs
|
|
else // because if we impacted original and pierced we'll already have select target'd and hit everything else we should be hitting
|
|
for(var/mob/M in loc) // so I guess we're STILL doing a for loop of mobs because living movement would otherwise have snowflake code for projectile CanPass
|
|
// so the snowflake vs performance is pretty arguable here
|
|
if(can_hit_target(M, M == original, TRUE))
|
|
Impact(M)
|
|
break
|
|
|
|
/**
|
|
* Projectile crossed: When something enters a projectile's tile, make sure the projectile hits it if it should be hitting it.
|
|
*/
|
|
/obj/projectile/proc/on_entered(datum/source, atom/movable/AM)
|
|
SIGNAL_HANDLER
|
|
scan_crossed_hit(AM)
|
|
|
|
/**
|
|
* Projectile can pass through
|
|
* Used to not even attempt to Bump() or fail to Cross() anything we already hit.
|
|
*/
|
|
/obj/projectile/CanPassThrough(atom/blocker, movement_dir, blocker_opinion)
|
|
return ..() || impacted[blocker.weak_reference]
|
|
|
|
/**
|
|
* Projectile moved:
|
|
*
|
|
* If not fired yet, do not do anything. Else,
|
|
*
|
|
* If temporary unstoppable movement used for piercing through things we already hit (impacted list) is set, unset it.
|
|
* Scan turf we're now in for anything we can/should hit. This is useful for hitting non dense objects the user
|
|
* directly clicks on, as well as for PHASING projectiles to be able to hit things at all as they don't ever Bump().
|
|
*/
|
|
/obj/projectile/Moved(atom/old_loc, movement_dir, forced, list/old_locs, momentum_change = TRUE)
|
|
. = ..()
|
|
if(!fired)
|
|
return
|
|
if(temporary_unstoppable_movement)
|
|
temporary_unstoppable_movement = FALSE
|
|
movement_type &= ~PHASING
|
|
scan_moved_turf() //mostly used for making sure we can hit a non-dense object the user directly clicked on, and for penetrating projectiles that don't bump
|
|
|
|
/**
|
|
* Checks if we should pierce something.
|
|
*
|
|
* NOT meant to be a pure proc, since this replaces prehit() which was used to do things.
|
|
* Return PROJECTILE_DELETE_WITHOUT_HITTING to delete projectile without hitting at all!
|
|
*/
|
|
/obj/projectile/proc/prehit_pierce(atom/A)
|
|
if((projectile_phasing & A.pass_flags_self) && (phasing_ignore_direct_target || original != A))
|
|
return PROJECTILE_PIERCE_PHASE
|
|
if(projectile_piercing & A.pass_flags_self)
|
|
return PROJECTILE_PIERCE_HIT
|
|
if(ismovable(A))
|
|
var/atom/movable/AM = A
|
|
if(AM.throwing)
|
|
return (projectile_phasing & LETPASSTHROW) ? PROJECTILE_PIERCE_PHASE : ((projectile_piercing & LETPASSTHROW)? PROJECTILE_PIERCE_HIT : PROJECTILE_PIERCE_NONE)
|
|
return PROJECTILE_PIERCE_NONE
|
|
|
|
/obj/projectile/proc/check_ricochet(atom/A)
|
|
var/chance = ricochet_chance * A.receive_ricochet_chance_mod
|
|
if(firer && HAS_TRAIT(firer, TRAIT_NICE_SHOT))
|
|
chance += NICE_SHOT_RICOCHET_BONUS
|
|
if(ricochets < min_ricochets || prob(chance))
|
|
return TRUE
|
|
return FALSE
|
|
|
|
/obj/projectile/proc/check_ricochet_flag(atom/A)
|
|
if((armor_flag in list(ENERGY, LASER)) && (A.flags_ricochet & RICOCHET_SHINY))
|
|
return TRUE
|
|
|
|
if((armor_flag in list(BOMB, BULLET)) && (A.flags_ricochet & RICOCHET_HARD))
|
|
return TRUE
|
|
|
|
return FALSE
|
|
|
|
/obj/projectile/proc/return_predicted_turf_after_moves(moves, forced_angle) //I say predicted because there's no telling that the projectile won't change direction/location in flight.
|
|
if(!trajectory && isnull(forced_angle) && isnull(Angle))
|
|
return FALSE
|
|
var/datum/point/vector/current = trajectory
|
|
if(!current)
|
|
var/turf/T = get_turf(src)
|
|
current = new(T.x, T.y, T.z, pixel_x, pixel_y, isnull(forced_angle)? Angle : forced_angle, SSprojectiles.global_pixel_speed)
|
|
var/datum/point/vector/v = current.return_vector_after_increments(moves * SSprojectiles.global_iterations_per_move)
|
|
return v.return_turf()
|
|
|
|
/obj/projectile/proc/return_pathing_turfs_in_moves(moves, forced_angle)
|
|
var/turf/current = get_turf(src)
|
|
var/turf/ending = return_predicted_turf_after_moves(moves, forced_angle)
|
|
return get_line(current, ending)
|
|
|
|
/obj/projectile/Process_Spacemove(movement_dir = 0, continuous_move = FALSE)
|
|
return TRUE //Bullets don't drift in space
|
|
|
|
/obj/projectile/process()
|
|
last_process = world.time
|
|
if(!loc || !fired || !trajectory)
|
|
fired = FALSE
|
|
return PROCESS_KILL
|
|
if(paused || !isturf(loc))
|
|
last_projectile_move += world.time - last_process //Compensates for pausing, so it doesn't become a hitscan projectile when unpaused from charged up ticks.
|
|
return
|
|
var/elapsed_time_deciseconds = (world.time - last_projectile_move) + time_offset
|
|
time_offset = 0
|
|
var/required_moves = speed > 0? FLOOR(elapsed_time_deciseconds / speed, 1) : MOVES_HITSCAN //Would be better if a 0 speed made hitscan but everyone hates those so I can't make it a universal system :<
|
|
if(required_moves == MOVES_HITSCAN)
|
|
required_moves = SSprojectiles.global_max_tick_moves
|
|
else
|
|
if(required_moves > SSprojectiles.global_max_tick_moves)
|
|
var/overrun = required_moves - SSprojectiles.global_max_tick_moves
|
|
required_moves = SSprojectiles.global_max_tick_moves
|
|
time_offset += overrun * speed
|
|
time_offset += MODULUS(elapsed_time_deciseconds, speed)
|
|
|
|
for(var/i in 1 to required_moves)
|
|
pixel_move(pixel_speed_multiplier, FALSE)
|
|
|
|
/obj/projectile/proc/fire(angle, atom/direct_target)
|
|
LAZYINITLIST(impacted)
|
|
if(fired_from)
|
|
SEND_SIGNAL(fired_from, COMSIG_PROJECTILE_BEFORE_FIRE, src, original)
|
|
if(firer)
|
|
SEND_SIGNAL(firer, COMSIG_PROJECTILE_FIRER_BEFORE_FIRE, src, fired_from, original)
|
|
if(!log_override && firer && original && !do_not_log)
|
|
log_combat(firer, original, "fired at", src, "from [get_area_name(src, TRUE)]")
|
|
//note: mecha projectile logging is handled in /obj/item/mecha_parts/mecha_equipment/weapon/action(). try to keep these messages roughly the sameish just for consistency's sake.
|
|
if(direct_target && (get_dist(direct_target, get_turf(src)) <= 1)) // point blank shots
|
|
process_hit(get_turf(direct_target), direct_target)
|
|
if(QDELETED(src))
|
|
return
|
|
if(isnum(angle))
|
|
set_angle(angle)
|
|
if(spread)
|
|
set_angle(Angle + ((rand() - 0.5) * spread))
|
|
var/turf/starting = get_turf(src)
|
|
if(isnull(Angle)) //Try to resolve through offsets if there's no angle set.
|
|
if(isnull(xo) || isnull(yo))
|
|
stack_trace("WARNING: Projectile [type] deleted due to being unable to resolve a target after angle was null!")
|
|
qdel(src)
|
|
return
|
|
var/turf/target = locate(clamp(starting + xo, 1, world.maxx), clamp(starting + yo, 1, world.maxy), starting.z)
|
|
set_angle(get_angle(src, target))
|
|
original_angle = Angle
|
|
if(!nondirectional_sprite)
|
|
transform = transform.Turn(Angle)
|
|
trajectory_ignore_forcemove = TRUE
|
|
forceMove(starting)
|
|
trajectory_ignore_forcemove = FALSE
|
|
trajectory = new(starting.x, starting.y, starting.z, pixel_x, pixel_y, Angle, SSprojectiles.global_pixel_speed)
|
|
last_projectile_move = world.time
|
|
fired = TRUE
|
|
play_fov_effect(starting, 6, "gunfire", dir = NORTH, angle = Angle)
|
|
SEND_SIGNAL(src, COMSIG_PROJECTILE_FIRE)
|
|
RegisterSignal(src, COMSIG_ATOM_ATTACK_HAND, PROC_REF(attempt_parry))
|
|
if(hitscan)
|
|
process_hitscan()
|
|
if(!(datum_flags & DF_ISPROCESSING))
|
|
START_PROCESSING(SSprojectiles, src)
|
|
pixel_move(pixel_speed_multiplier, FALSE) //move it now!
|
|
|
|
/obj/projectile/proc/set_angle(new_angle) //wrapper for overrides.
|
|
if(!nondirectional_sprite)
|
|
transform = transform.TurnTo(Angle, new_angle)
|
|
Angle = new_angle
|
|
if(trajectory)
|
|
trajectory.set_angle(new_angle)
|
|
if(fired && hitscan && isloc(loc) && (loc != last_angle_set_hitscan_store))
|
|
last_angle_set_hitscan_store = loc
|
|
var/datum/point/point_cache = new (src)
|
|
point_cache = trajectory.copy_to()
|
|
store_hitscan_collision(point_cache)
|
|
return TRUE
|
|
|
|
/// Same as set_angle, but the reflection continues from the center of the object that reflects it instead of the side
|
|
/obj/projectile/proc/set_angle_centered(new_angle)
|
|
if(!nondirectional_sprite)
|
|
transform = transform.TurnTo(Angle, new_angle)
|
|
Angle = new_angle
|
|
if(trajectory)
|
|
trajectory.set_angle(new_angle)
|
|
|
|
var/list/coordinates = trajectory.return_coordinates()
|
|
trajectory.set_location(coordinates[1], coordinates[2], coordinates[3]) // Sets the trajectory to the center of the tile it bounced at
|
|
|
|
if(fired && hitscan && isloc(loc) && (loc != last_angle_set_hitscan_store)) // Handles hitscan projectiles
|
|
last_angle_set_hitscan_store = loc
|
|
var/datum/point/point_cache = new (src)
|
|
point_cache.initialize_location(coordinates[1], coordinates[2], coordinates[3]) // Take the center of the hitscan collision tile
|
|
store_hitscan_collision(point_cache)
|
|
return TRUE
|
|
|
|
|
|
|
|
/obj/projectile/forceMove(atom/target)
|
|
if(!isloc(target) || !isloc(loc) || !z)
|
|
return ..()
|
|
var/zc = target.z != z
|
|
var/old = loc
|
|
if(zc)
|
|
before_z_change(old, target)
|
|
. = ..()
|
|
if(QDELETED(src)) // we coulda bumped something
|
|
return
|
|
if(trajectory && !trajectory_ignore_forcemove && isturf(target))
|
|
if(hitscan)
|
|
finalize_hitscan_and_generate_tracers(FALSE)
|
|
trajectory.initialize_location(target.x, target.y, target.z, 0, 0)
|
|
if(hitscan)
|
|
record_hitscan_start(RETURN_PRECISE_POINT(src))
|
|
if(zc)
|
|
after_z_change(old, target)
|
|
|
|
/obj/projectile/proc/after_z_change(atom/olcloc, atom/newloc)
|
|
|
|
/obj/projectile/proc/before_z_change(atom/oldloc, atom/newloc)
|
|
|
|
/obj/projectile/vv_edit_var(var_name, var_value)
|
|
switch(var_name)
|
|
if(NAMEOF(src, Angle))
|
|
set_angle(var_value)
|
|
return TRUE
|
|
else
|
|
return ..()
|
|
|
|
/obj/projectile/proc/set_pixel_speed(new_speed)
|
|
if(trajectory)
|
|
trajectory.set_speed(new_speed)
|
|
return TRUE
|
|
return FALSE
|
|
|
|
/obj/projectile/proc/record_hitscan_start(datum/point/point_cache)
|
|
if(point_cache)
|
|
beam_segments = list()
|
|
beam_index = point_cache
|
|
beam_segments[beam_index] = null //record start.
|
|
|
|
/obj/projectile/proc/process_hitscan()
|
|
var/safety = range * 10
|
|
record_hitscan_start(RETURN_POINT_VECTOR_INCREMENT(src, Angle, MUZZLE_EFFECT_PIXEL_INCREMENT, 1))
|
|
while(loc && !QDELETED(src))
|
|
if(paused)
|
|
stoplag(1)
|
|
continue
|
|
if(safety-- <= 0)
|
|
if(loc)
|
|
Bump(loc)
|
|
if(!QDELETED(src))
|
|
qdel(src)
|
|
return //Kill!
|
|
pixel_move(1, TRUE)
|
|
|
|
/obj/projectile/proc/pixel_move(trajectory_multiplier, hitscanning = FALSE)
|
|
if(!loc || !trajectory)
|
|
return
|
|
last_projectile_move = world.time
|
|
if(homing)
|
|
process_homing()
|
|
var/forcemoved = FALSE
|
|
for(var/i in 1 to SSprojectiles.global_iterations_per_move)
|
|
if(QDELETED(src))
|
|
return
|
|
trajectory.increment(trajectory_multiplier)
|
|
var/turf/T = trajectory.return_turf()
|
|
if(!istype(T))
|
|
qdel(src)
|
|
return
|
|
if(T.z != loc.z)
|
|
var/old = loc
|
|
before_z_change(loc, T)
|
|
trajectory_ignore_forcemove = TRUE
|
|
forceMove(T)
|
|
trajectory_ignore_forcemove = FALSE
|
|
after_z_change(old, loc)
|
|
if(!hitscanning)
|
|
pixel_x = trajectory.return_px()
|
|
pixel_y = trajectory.return_py()
|
|
forcemoved = TRUE
|
|
hitscan_last = loc
|
|
else if(T != loc)
|
|
step_towards(src, T)
|
|
hitscan_last = loc
|
|
if(QDELETED(src)) //deleted on last move
|
|
return
|
|
if(!hitscanning && !forcemoved)
|
|
pixel_x = trajectory.return_px() - trajectory.mpx * trajectory_multiplier * SSprojectiles.global_iterations_per_move
|
|
pixel_y = trajectory.return_py() - trajectory.mpy * trajectory_multiplier * SSprojectiles.global_iterations_per_move
|
|
animate(src, pixel_x = trajectory.return_px(), pixel_y = trajectory.return_py(), time = 1, flags = ANIMATION_END_NOW)
|
|
Range()
|
|
|
|
/obj/projectile/proc/process_homing() //may need speeding up in the future performance wise.
|
|
if(!homing_target)
|
|
return FALSE
|
|
var/datum/point/PT = RETURN_PRECISE_POINT(homing_target)
|
|
PT.x += clamp(homing_offset_x, 1, world.maxx)
|
|
PT.y += clamp(homing_offset_y, 1, world.maxy)
|
|
var/angle = closer_angle_difference(Angle, angle_between_points(RETURN_PRECISE_POINT(src), PT))
|
|
set_angle(Angle + clamp(angle, -homing_turn_speed, homing_turn_speed))
|
|
|
|
/obj/projectile/proc/set_homing_target(atom/A)
|
|
if(!A || (!isturf(A) && !isturf(A.loc)))
|
|
return FALSE
|
|
homing = TRUE
|
|
homing_target = A
|
|
homing_offset_x = rand(homing_inaccuracy_min, homing_inaccuracy_max)
|
|
homing_offset_y = rand(homing_inaccuracy_min, homing_inaccuracy_max)
|
|
if(prob(50))
|
|
homing_offset_x = -homing_offset_x
|
|
if(prob(50))
|
|
homing_offset_y = -homing_offset_y
|
|
|
|
/**
|
|
* Aims the projectile at a target.
|
|
*
|
|
* Must be passed at least one of a target or a list of click parameters.
|
|
* If only passed the click modifiers the source atom must be a mob with a client.
|
|
*
|
|
* Arguments:
|
|
* - [target][/atom]: (Optional) The thing that the projectile will be aimed at.
|
|
* - [source][/atom]: The initial location of the projectile or the thing firing it.
|
|
* - [modifiers][/list]: (Optional) A list of click parameters to apply to this operation.
|
|
* - deviation: (Optional) How the trajectory should deviate from the target in degrees.
|
|
* - //Spread is FORCED!
|
|
*/
|
|
/obj/projectile/proc/preparePixelProjectile(atom/target, atom/source, list/modifiers = null, deviation = 0)
|
|
if(!(isnull(modifiers) || islist(modifiers)))
|
|
stack_trace("WARNING: Projectile [type] fired with non-list modifiers, likely was passed click params.")
|
|
modifiers = null
|
|
|
|
var/turf/source_loc = get_turf(source)
|
|
var/turf/target_loc = get_turf(target)
|
|
if(isnull(source_loc))
|
|
stack_trace("WARNING: Projectile [type] fired from nullspace.")
|
|
qdel(src)
|
|
return FALSE
|
|
|
|
trajectory_ignore_forcemove = TRUE
|
|
forceMove(source_loc)
|
|
trajectory_ignore_forcemove = FALSE
|
|
|
|
starting = source_loc
|
|
pixel_x = source.pixel_x
|
|
pixel_y = source.pixel_y
|
|
original = target
|
|
if(length(modifiers))
|
|
var/list/calculated = calculate_projectile_angle_and_pixel_offsets(source, target_loc && target, modifiers)
|
|
|
|
p_x = calculated[2]
|
|
p_y = calculated[3]
|
|
set_angle(calculated[1] + deviation)
|
|
return TRUE
|
|
|
|
if(target_loc)
|
|
yo = target_loc.y - source_loc.y
|
|
xo = target_loc.x - source_loc.x
|
|
set_angle(get_angle(src, target_loc) + deviation)
|
|
return TRUE
|
|
|
|
stack_trace("WARNING: Projectile [type] fired without a target or mouse parameters to aim with.")
|
|
qdel(src)
|
|
return FALSE
|
|
|
|
/**
|
|
* Calculates the pixel offsets and angle that a projectile should be launched at.
|
|
*
|
|
* Arguments:
|
|
* - [source][/atom]: The thing that the projectile is being shot from.
|
|
* - [target][/atom]: (Optional) The thing that the projectile is being shot at.
|
|
* - If this is not provided the source atom must be a mob with a client.
|
|
* - [modifiers][/list]: A list of click parameters used to modify the shot angle.
|
|
*/
|
|
/proc/calculate_projectile_angle_and_pixel_offsets(atom/source, atom/target, modifiers)
|
|
var/angle = 0
|
|
var/p_x = LAZYACCESS(modifiers, ICON_X) ? text2num(LAZYACCESS(modifiers, ICON_X)) : world.icon_size / 2 // ICON_(X|Y) are measured from the bottom left corner of the icon.
|
|
var/p_y = LAZYACCESS(modifiers, ICON_Y) ? text2num(LAZYACCESS(modifiers, ICON_Y)) : world.icon_size / 2 // This centers the target if modifiers aren't passed.
|
|
|
|
if(target)
|
|
var/turf/source_loc = get_turf(source)
|
|
var/turf/target_loc = get_turf(target)
|
|
var/dx = ((target_loc.x - source_loc.x) * world.icon_size) + (target.pixel_x - source.pixel_x) + (p_x - (world.icon_size / 2))
|
|
var/dy = ((target_loc.y - source_loc.y) * world.icon_size) + (target.pixel_y - source.pixel_y) + (p_y - (world.icon_size / 2))
|
|
|
|
angle = ATAN2(dy, dx)
|
|
return list(angle, p_x, p_y)
|
|
|
|
if(!ismob(source) || !LAZYACCESS(modifiers, SCREEN_LOC))
|
|
CRASH("Can't make trajectory calculations without a target or click modifiers and a client.")
|
|
|
|
var/mob/user = source
|
|
if(!user.client)
|
|
CRASH("Can't make trajectory calculations without a target or click modifiers and a client.")
|
|
|
|
//Split screen-loc up into X+Pixel_X and Y+Pixel_Y
|
|
var/list/screen_loc_params = splittext(LAZYACCESS(modifiers, SCREEN_LOC), ",")
|
|
//Split X+Pixel_X up into list(X, Pixel_X)
|
|
var/list/screen_loc_X = splittext(screen_loc_params[1],":")
|
|
//Split Y+Pixel_Y up into list(Y, Pixel_Y)
|
|
var/list/screen_loc_Y = splittext(screen_loc_params[2],":")
|
|
|
|
var/tx = (text2num(screen_loc_X[1]) - 1) * world.icon_size + text2num(screen_loc_X[2])
|
|
var/ty = (text2num(screen_loc_Y[1]) - 1) * world.icon_size + text2num(screen_loc_Y[2])
|
|
|
|
//Calculate the "resolution" of screen based on client's view and world's icon size. This will work if the user can view more tiles than average.
|
|
var/list/screenview = view_to_pixels(user.client.view)
|
|
|
|
var/ox = round(screenview[1] / 2) - user.client.pixel_x //"origin" x
|
|
var/oy = round(screenview[2] / 2) - user.client.pixel_y //"origin" y
|
|
angle = ATAN2(tx - oy, ty - ox)
|
|
return list(angle, p_x, p_y)
|
|
|
|
/obj/projectile/Destroy()
|
|
if(hitscan)
|
|
finalize_hitscan_and_generate_tracers()
|
|
STOP_PROCESSING(SSprojectiles, src)
|
|
cleanup_beam_segments()
|
|
if(trajectory)
|
|
QDEL_NULL(trajectory)
|
|
return ..()
|
|
|
|
/obj/projectile/proc/cleanup_beam_segments()
|
|
QDEL_LIST_ASSOC(beam_segments)
|
|
beam_segments = list()
|
|
QDEL_NULL(beam_index)
|
|
|
|
/obj/projectile/proc/finalize_hitscan_and_generate_tracers(impacting = TRUE)
|
|
if(trajectory && beam_index)
|
|
var/datum/point/point_cache = trajectory.copy_to()
|
|
beam_segments[beam_index] = point_cache
|
|
generate_hitscan_tracers(null, null, impacting)
|
|
|
|
/obj/projectile/proc/generate_hitscan_tracers(cleanup = TRUE, duration = 3, impacting = TRUE)
|
|
if(!length(beam_segments))
|
|
return
|
|
if(tracer_type)
|
|
var/tempref = REF(src)
|
|
for(var/datum/point/p in beam_segments)
|
|
generate_tracer_between_points(p, beam_segments[p], tracer_type, color, duration, hitscan_light_range, hitscan_light_color_override, hitscan_light_intensity, tempref)
|
|
if(muzzle_type && duration > 0)
|
|
var/datum/point/p = beam_segments[1]
|
|
var/atom/movable/thing = new muzzle_type
|
|
p.move_atom_to_src(thing)
|
|
var/matrix/matrix = new
|
|
matrix.Turn(original_angle)
|
|
thing.transform = matrix
|
|
thing.color = color
|
|
thing.set_light(muzzle_flash_range, muzzle_flash_intensity, muzzle_flash_color_override? muzzle_flash_color_override : color)
|
|
QDEL_IN(thing, duration)
|
|
if(impacting && impact_type && duration > 0)
|
|
var/datum/point/p = beam_segments[beam_segments[beam_segments.len]]
|
|
var/atom/movable/thing = new impact_type
|
|
p.move_atom_to_src(thing)
|
|
var/matrix/matrix = new
|
|
matrix.Turn(Angle)
|
|
thing.transform = matrix
|
|
thing.color = color
|
|
thing.set_light(impact_light_range, impact_light_intensity, impact_light_color_override? impact_light_color_override : color)
|
|
QDEL_IN(thing, duration)
|
|
if(cleanup)
|
|
cleanup_beam_segments()
|
|
|
|
/obj/projectile/experience_pressure_difference()
|
|
return
|
|
|
|
///Like [/obj/item/proc/updateEmbedding] but for projectiles instead, call this when you want to add embedding or update the stats on the embedding element
|
|
/obj/projectile/proc/updateEmbedding()
|
|
if(!shrapnel_type || !LAZYLEN(embedding))
|
|
return
|
|
|
|
AddElement(/datum/element/embed,\
|
|
embed_chance = (!isnull(embedding["embed_chance"]) ? embedding["embed_chance"] : EMBED_CHANCE),\
|
|
fall_chance = (!isnull(embedding["fall_chance"]) ? embedding["fall_chance"] : EMBEDDED_ITEM_FALLOUT),\
|
|
pain_chance = (!isnull(embedding["pain_chance"]) ? embedding["pain_chance"] : EMBEDDED_PAIN_CHANCE),\
|
|
pain_mult = (!isnull(embedding["pain_mult"]) ? embedding["pain_mult"] : EMBEDDED_PAIN_MULTIPLIER),\
|
|
remove_pain_mult = (!isnull(embedding["remove_pain_mult"]) ? embedding["remove_pain_mult"] : EMBEDDED_UNSAFE_REMOVAL_PAIN_MULTIPLIER),\
|
|
rip_time = (!isnull(embedding["rip_time"]) ? embedding["rip_time"] : EMBEDDED_UNSAFE_REMOVAL_TIME),\
|
|
ignore_throwspeed_threshold = (!isnull(embedding["ignore_throwspeed_threshold"]) ? embedding["ignore_throwspeed_threshold"] : FALSE),\
|
|
impact_pain_mult = (!isnull(embedding["impact_pain_mult"]) ? embedding["impact_pain_mult"] : EMBEDDED_IMPACT_PAIN_MULTIPLIER),\
|
|
jostle_chance = (!isnull(embedding["jostle_chance"]) ? embedding["jostle_chance"] : EMBEDDED_JOSTLE_CHANCE),\
|
|
jostle_pain_mult = (!isnull(embedding["jostle_pain_mult"]) ? embedding["jostle_pain_mult"] : EMBEDDED_JOSTLE_PAIN_MULTIPLIER),\
|
|
pain_stam_pct = (!isnull(embedding["pain_stam_pct"]) ? embedding["pain_stam_pct"] : EMBEDDED_PAIN_STAM_PCT),\
|
|
projectile_payload = shrapnel_type)
|
|
return TRUE
|
|
|
|
/**
|
|
* Is this projectile considered "hostile"?
|
|
*
|
|
* By default all projectiles which deal damage or impart crowd control effects (including stamina) are hostile
|
|
*
|
|
* This is NOT used for pacifist checks, that's handled by [/obj/item/ammo_casing/var/harmful]
|
|
* This is used in places such as AI responses to determine if they're being threatened or not (among other places)
|
|
*/
|
|
/obj/projectile/proc/is_hostile_projectile()
|
|
if(damage > 0 || stamina > 0)
|
|
return TRUE
|
|
|
|
if(paralyze + stun + immobilize + knockdown > 0 SECONDS)
|
|
return TRUE
|
|
|
|
return FALSE
|
|
|
|
///Checks if the projectile can embed into someone
|
|
/obj/projectile/proc/can_embed_into(atom/hit)
|
|
return embedding && shrapnel_type && iscarbon(hit) && !HAS_TRAIT(hit, TRAIT_PIERCEIMMUNE)
|
|
|
|
/// Reflects the projectile off of something
|
|
/obj/projectile/proc/reflect(atom/hit_atom)
|
|
if(!starting)
|
|
return
|
|
var/new_x = starting.x + pick(0, 0, 0, 0, 0, -1, 1, -2, 2)
|
|
var/new_y = starting.y + pick(0, 0, 0, 0, 0, -1, 1, -2, 2)
|
|
var/turf/current_tile = get_turf(hit_atom)
|
|
|
|
// redirect the projectile
|
|
original = locate(new_x, new_y, z)
|
|
starting = current_tile
|
|
firer = hit_atom
|
|
yo = new_y - current_tile.y
|
|
xo = new_x - current_tile.x
|
|
var/new_angle_s = Angle + rand(120,240)
|
|
while(new_angle_s > 180) // Translate to regular projectile degrees
|
|
new_angle_s -= 360
|
|
set_angle(new_angle_s)
|
|
|
|
#undef MOVES_HITSCAN
|
|
#undef MUZZLE_EFFECT_PIXEL_INCREMENT
|
|
|
|
/// Fire a projectile from this atom at another atom
|
|
/atom/proc/fire_projectile(projectile_type, atom/target, sound, firer, list/ignore_targets = list())
|
|
if (!isnull(sound))
|
|
playsound(src, sound, vol = 100, vary = TRUE)
|
|
|
|
var/turf/startloc = get_turf(src)
|
|
var/obj/projectile/bullet = new projectile_type(startloc)
|
|
bullet.starting = startloc
|
|
for (var/atom/thing as anything in ignore_targets)
|
|
bullet.impacted[WEAKREF(thing)] = TRUE
|
|
bullet.firer = firer || src
|
|
bullet.fired_from = src
|
|
bullet.yo = target.y - startloc.y
|
|
bullet.xo = target.x - startloc.x
|
|
bullet.original = target
|
|
bullet.preparePixelProjectile(target, src)
|
|
bullet.fire()
|
|
return bullet
|