diff --git a/code/ATMOSPHERICS/atmospherics_helpers.dm b/code/ATMOSPHERICS/atmospherics_helpers.dm
index f1b04540a8..6c1ec58100 100644
--- a/code/ATMOSPHERICS/atmospherics_helpers.dm
+++ b/code/ATMOSPHERICS/atmospherics_helpers.dm
@@ -11,6 +11,19 @@
return specific_power
+//Calculates the amount of power needed to move one mole of a certain gas from source to sink.
+/obj/machinery/atmospherics/proc/calculate_specific_power_gas(var/gasid, datum/gas_mixture/source, datum/gas_mixture/sink)
+ //Calculate the amount of energy required
+ var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
+ var/specific_entropy = sink.specific_entropy_gas(gasid) - source.specific_entropy_gas(gasid) //environment is gaining moles, air_contents is loosing
+ var/specific_power = 0 // W/mol
+
+ //If specific_entropy is < 0 then transfer_moles is limited by how powerful the pump is
+ if (specific_entropy < 0)
+ specific_power = -specific_entropy*air_temperature //how much power we need per mole
+
+ return specific_power
+
//This proc handles power usages so that we only have to call use_power() when the pump is loaded but not at full load.
/obj/machinery/atmospherics/proc/handle_pump_power_draw(var/usage_amount)
if (usage_amount > active_power_usage - 5)
diff --git a/code/ATMOSPHERICS/components/binary_devices/pump.dm b/code/ATMOSPHERICS/components/binary_devices/pump.dm
index 50c20337d8..f73c4f0bc8 100644
--- a/code/ATMOSPHERICS/components/binary_devices/pump.dm
+++ b/code/ATMOSPHERICS/components/binary_devices/pump.dm
@@ -61,15 +61,11 @@ Thus, the two variables affect pump operation are set in New():
update_underlays()
/obj/machinery/atmospherics/binary/pump/process()
- //reset these each iteration
- last_power_draw = 0
- last_flow_rate = 0
-
- if(stat & (NOPOWER|BROKEN))
- return
- if(!on)
+ if((stat & (NOPOWER|BROKEN)) || !on)
update_use_power(0)
- return 0
+ last_power_draw = 0
+ last_flow_rate = 0
+ return
var/datum/gas_mixture/source = air1
var/datum/gas_mixture/sink = air2
@@ -78,17 +74,19 @@ Thus, the two variables affect pump operation are set in New():
//Calculate necessary moles to transfer using PV=nRT
if(pressure_delta > 0.01 && (source.total_moles > 0) && (source.temperature > 0 || sink.temperature > 0))
- //Figure out how much gas to transfer
+
+ var/transfer_moles = source.total_moles
+ /* TODO Uncomment this once we have a good way to get the volume of a pipe network.
+ //Figure out how much gas to transfer to meet the target pressure.
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
- var/output_volume = sink.volume
+ var/output_volume = sink.volume * sink.group_multiplier
//Return the number of moles that would have to be transfered to bring sink to the target pressure
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
+ */
- //Actually transfer the gas
-
- //Calculate the amount of energy required
+ //Calculate the amount of energy required and limit transfer_moles based on available power
var/specific_power = calculate_specific_power(source, sink) //this has to be calculated before we modify any gas mixtures
if (specific_power > 0)
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
@@ -99,11 +97,11 @@ Thus, the two variables affect pump operation are set in New():
last_flow_rate = (removed.total_moles/(removed.total_moles + source.total_moles))*source.volume
if (power_draw > 0)
- sink.add_thermal_energy(power_draw)
- handle_power_draw(power_draw)
+ removed.add_thermal_energy(power_draw) //1st law - energy is conserved
+ handle_pump_power_draw(power_draw)
last_power_draw = power_draw
else
- handle_power_draw(idle_power_usage)
+ handle_pump_power_draw(idle_power_usage)
last_power_draw = idle_power_usage
sink.merge(removed)
@@ -115,22 +113,12 @@ Thus, the two variables affect pump operation are set in New():
network2.update = 1
else
update_use_power(0)
+ last_power_draw = 0
+ last_flow_rate = 0
return 1
return 1
-//This proc handles power usages so that we only have to call use_power() when the pump is loaded but not at full load.
-/obj/machinery/atmospherics/binary/pump/proc/handle_power_draw(var/usage_amount)
- if (usage_amount > active_power_usage - 5)
- update_use_power(2)
- else
- update_use_power(1)
-
- if (usage_amount > idle_power_usage)
- use_power(usage_amount) //in practice it's pretty rare that we will get here, so calling use_power() is alright.
-
- last_power_draw = usage_amount
-
//Radio remote control
/obj/machinery/atmospherics/binary/pump/proc/set_frequency(new_frequency)
diff --git a/code/ATMOSPHERICS/components/unary/vent_pump.dm b/code/ATMOSPHERICS/components/unary/vent_pump.dm
index 01b2654101..6e76ddcbd0 100644
--- a/code/ATMOSPHERICS/components/unary/vent_pump.dm
+++ b/code/ATMOSPHERICS/components/unary/vent_pump.dm
@@ -18,7 +18,7 @@
use_power = 1
idle_power_usage = 150 //internal circuitry, friction losses and stuff
active_power_usage = 7500 //This also doubles as a measure of how powerful the pump is, in Watts. 7500 W ~ 10 HP
-
+
var/area/initial_loc
level = 1
var/area_uid
@@ -125,24 +125,25 @@
update_icon()
update_underlays()
+/obj/machinery/atmospherics/unary/vent_pump/proc/can_pump()
+ if(stat & (NOPOWER|BROKEN))
+ return 0
+ if(!on)
+ return 0
+ if(welded)
+ return 0
+ return 1
+
/obj/machinery/atmospherics/unary/vent_pump/process()
..()
- //reset these each iteration
- last_power_draw = 0
- last_flow_rate = 0
-
- if(stat & (NOPOWER|BROKEN))
- return
if (!node)
on = 0
- if(!on)
+ if(!can_pump())
update_use_power(0)
+ last_power_draw = 0
+ last_flow_rate = 0
return 0
-
- if(welded)
- return 0
-
var/datum/gas_mixture/environment = loc.return_air()
var/environment_pressure = environment.return_pressure()
@@ -161,7 +162,7 @@
//Unfortunately there's no good way to get the volume of the room, so assume 10 tiles
//We will overshoot in small rooms when dealing with huge pressures but it won't be so bad
- var/output_volume = environment.volume * 10
+ var/output_volume = environment.volume * environment.group_multiplier
var/air_temperature = environment.temperature? environment.volume : air_contents.temperature
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
@@ -172,7 +173,7 @@
if(pressure_checks & PRESSURE_CHECK_INTERNAL)
pressure_delta = min(pressure_delta, internal_pressure_bound - air_contents.return_pressure()) //increasing the pressure here
- var/output_volume = air_contents.volume
+ var/output_volume = air_contents.volume * air_contents.group_multiplier
var/air_temperature = air_contents.temperature? air_contents.temperature : environment.temperature
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
@@ -182,6 +183,8 @@
if(network)
network.update = 1
else
+ last_power_draw = 0
+ last_flow_rate = 0
update_use_power(0)
return 1
@@ -215,15 +218,6 @@
//merge the removed gas into the sink
sink.merge(removed)
-
- /* Uncomment this in case it actually matters whether we call assume_air() or just merge with the returned air directly
- if (istype(sink, /datum/gas_mixture)
- var/datum/gas_mixture/M = sink
- M.merge(removed)
- else if (istype(sink, /turf)
- var/turf/T = sink
- T.assume_air(removed)
- */
//Radio remote control
diff --git a/code/ATMOSPHERICS/components/unary/vent_scrubber.dm b/code/ATMOSPHERICS/components/unary/vent_scrubber.dm
index 9506da2459..ebdea2fc98 100644
--- a/code/ATMOSPHERICS/components/unary/vent_scrubber.dm
+++ b/code/ATMOSPHERICS/components/unary/vent_scrubber.dm
@@ -5,6 +5,8 @@
name = "Air Scrubber"
desc = "Has a valve and pump attached to it"
use_power = 1
+ idle_power_usage = 150 //internal circuitry, friction losses and stuff
+ active_power_usage = 7500 //This also doubles as a measure of how powerful the pump is, in Watts. 7500 W ~ 10 HP
level = 1
@@ -15,11 +17,8 @@
var/on = 0
var/scrubbing = 1 //0 = siphoning, 1 = scrubbing
- var/scrub_CO2 = 1
- var/scrub_Toxins = 0
- var/scrub_N2O = 0
+ var/list/scrubbing_gas = list()
- var/volume_rate = 120
var/panic = 0 //is this scrubber panicked?
var/area_uid
@@ -90,9 +89,9 @@
"power" = on,
"scrubbing" = scrubbing,
"panic" = panic,
- "filter_co2" = scrub_CO2,
- "filter_phoron" = scrub_Toxins,
- "filter_n2o" = scrub_N2O,
+ "filter_co2" = ("carbon_dioxide" in scrubbing_gas),
+ "filter_phoron" = ("phoron" in scrubbing_gas),
+ "filter_n2o" = ("sleeping_agent" in scrubbing_gas),
"sigtype" = "status"
)
if(!initial_loc.air_scrub_names[id_tag])
@@ -119,57 +118,79 @@
on = 0
//broadcast_status()
if(!on)
+ update_use_power(0)
return 0
-
var/datum/gas_mixture/environment = loc.return_air()
+ if ((environment.total_moles == 0) || (environment.temperature == 0 && air_contents.temperature == 0))
+ update_use_power(0)
+ return
- if(scrubbing)
- if((environment.gas["phoron"]>0.001) || (environment.gas["carbon_dioxide"]>0.001) || (environment.gas["oxygen_agent_b"]>0.001) || (environment.gas["sleeping_agent"]>0.001))
- var/transfer_moles = min(1, volume_rate/environment.volume)*environment.total_moles
-
- //Take a gas sample
- var/datum/gas_mixture/removed = loc.remove_air(transfer_moles)
- if (isnull(removed)) //in space
- return
-
- //Filter it
- var/datum/gas_mixture/filtered_out = new
- filtered_out.temperature = removed.temperature
- if(scrub_Toxins)
- filtered_out.gas["phoron"] = removed.gas["phoron"]
- removed.gas["phoron"] = 0
- if(scrub_CO2)
- filtered_out.gas["carbon_dioxide"] = removed.gas["carbon_dioxide"]
- removed.gas["carbon_dioxide"] = 0
- if(scrub_N2O)
- filtered_out.gas["sleeping_agent"] = removed.gas["sleeping_agent"]
- removed.gas["sleeping_agent"] = 0
- if(removed.gas["oxygen_agent_b"])
- filtered_out.gas["oxygen_agent_b"] = removed.gas["oxygen_agent_b"]
- removed.gas["oxygen_agent_b"] = 0
-
- //Remix the resulting gases
- air_contents.merge(filtered_out)
-
- loc.assume_air(removed)
-
- if(network)
- network.update = 1
-
- else //Just siphoning all air
- if (air_contents.return_pressure()>=50*ONE_ATMOSPHERE)
+ var/power_draw
+ if(scrubbing)
+ //Filter it
+ var/total_specific_power = 0 //the power required to remove one mole of filterable gas
+ var/total_filterable_moles = 0
+ var/list/specific_power_gas = list()
+ for (var/g in scrubbing_gas)
+ if (environment.gas[g] < 0.1)
+ continue //don't bother
+
+ var/specific_power = calculate_specific_power_gas(g, environment, air_contents)
+ specific_power_gas[g] = specific_power
+ total_specific_power += specific_power
+ total_filterable_moles += environment.gas[g]
+
+ if (total_filterable_moles == 0)
+ update_use_power(0)
return
+
+ //Calculate the amount of energy required and limit transfer_moles based on available power
+ power_draw = 0
+ var/total_transfer_moles = total_filterable_moles
+ if (total_specific_power > 0)
+ total_transfer_moles = min(total_transfer_moles, active_power_usage/total_specific_power)
+
+ for (var/g in scrubbing_gas)
+ var/transfer_moles = environment.gas[g]
+ if (specific_power_gas[g] > 0)
+ //if our flow rate is limited by available power, the proportion of the filtered gas is based on mole ratio
+ transfer_moles = min(transfer_moles, total_transfer_moles*(environment.gas[g]/total_filterable_moles))
+
+ environment.gas[g] -= transfer_moles
+ air_contents.gas[g] += transfer_moles
+ power_draw += specific_power_gas[g]*transfer_moles
+
+ //Remix the resulting gases
+ air_contents.update_values()
+ environment.update_values()
- var/transfer_moles = environment.total_moles*(volume_rate/environment.volume)
+ else //Just siphon all air
+ var/transfer_moles = environment.total_moles
- var/datum/gas_mixture/removed = loc.remove_air(transfer_moles)
+ //Calculate the amount of energy required
+ var/specific_power = calculate_specific_power(environment, air_contents) //this has to be calculated before we modify any gas mixtures
+ if (specific_power > 0)
+ transfer_moles = min(transfer_moles, active_power_usage / specific_power)
+
+ if (transfer_moles < 0.01)
+ update_use_power(0)
+ return //don't bother
- air_contents.merge(removed)
-
- if(network)
- network.update = 1
+ power_draw = specific_power*transfer_moles
+ air_contents.merge(environment.remove(transfer_moles))
+ if (power_draw > 0)
+ air_contents.add_thermal_energy(power_draw)
+ //last_power_draw = power_draw
+ handle_pump_power_draw(power_draw)
+ else
+ //last_power_draw = idle_power_usage
+ handle_pump_power_draw(idle_power_usage)
+
+ if(network)
+ network.update = 1
+
return 1
/obj/machinery/atmospherics/unary/vent_scrubber/hide(var/i) //to make the little pipe section invisible, the icon changes.
@@ -191,39 +212,39 @@
if(panic)
on = 1
scrubbing = 0
- volume_rate = 2000
else
scrubbing = 1
- volume_rate = initial(volume_rate)
if(signal.data["toggle_panic_siphon"] != null)
panic = !panic
if(panic)
on = 1
scrubbing = 0
- volume_rate = 2000
else
scrubbing = 1
- volume_rate = initial(volume_rate)
if(signal.data["scrubbing"] != null)
scrubbing = text2num(signal.data["scrubbing"])
if(signal.data["toggle_scrubbing"])
scrubbing = !scrubbing
- if(signal.data["co2_scrub"] != null)
- scrub_CO2 = text2num(signal.data["co2_scrub"])
- if(signal.data["toggle_co2_scrub"])
- scrub_CO2 = !scrub_CO2
+ var/list/toggle = list()
+
+ if(!isnull(signal.data["co2_scrub"]) && text2num(signal.data["co2_scrub"]) != ("carbon_dioxide" in scrubbing_gas))
+ toggle += "carbon_dioxide"
+ else if(signal.data["toggle_co2_scrub"])
+ toggle += "carbon_dioxide"
- if(signal.data["tox_scrub"] != null)
- scrub_Toxins = text2num(signal.data["tox_scrub"])
- if(signal.data["toggle_tox_scrub"])
- scrub_Toxins = !scrub_Toxins
+ if(!isnull(signal.data["tox_scrub"]) && text2num(signal.data["tox_scrub"]) != ("phoron" in scrubbing_gas))
+ toggle += "phoron"
+ else if(signal.data["toggle_tox_scrub"])
+ toggle += "phoron"
- if(signal.data["n2o_scrub"] != null)
- scrub_N2O = text2num(signal.data["n2o_scrub"])
- if(signal.data["toggle_n2o_scrub"])
- scrub_N2O = !scrub_N2O
+ if(!isnull(signal.data["n2o_scrub"]) && text2num(signal.data["n2o_scrub"]) != ("sleeping_agent" in scrubbing_gas))
+ toggle += "sleeping_agent"
+ else if(signal.data["toggle_n2o_scrub"])
+ toggle += "sleeping_agent"
+
+ scrubbing_gas ^= toggle
if(signal.data["init"] != null)
name = signal.data["init"]
diff --git a/code/ZAS/_gas_mixture_xgm.dm b/code/ZAS/_gas_mixture_xgm.dm
index e063950835..8d2e8d9c3e 100644
--- a/code/ZAS/_gas_mixture_xgm.dm
+++ b/code/ZAS/_gas_mixture_xgm.dm
@@ -89,8 +89,11 @@
for(var/g in gas)
. += gas_data.specific_heat[g] * gas[g]
-//Adds or removes thermal energy
+//Adds or removes thermal energy. Returns the actual thermal energy change, as in the case of removing energy we can't go below TCMB.
/datum/gas_mixture/proc/add_thermal_energy(var/thermal_energy)
+ if (temperature < TCMB || total_moles == 0)
+ return 0
+
var/heat_capacity = heat_capacity()
if (thermal_energy < 0)
var/thermal_energy_limit = -(temperature - TCMB)*heat_capacity //ensure temperature does not go below TCMB
@@ -103,27 +106,28 @@
return heat_capacity()*(new_temperature - temperature)
//Technically vacuum doesn't have a specific entropy. Just use a really big number (infinity would be ideal) here so that it's easy to add gas to vacuum and hard to take gas out.
-#define SPECIFIC_ENTROPY_VACUUM 15000
+#define SPECIFIC_ENTROPY_VACUUM 150000
-//Returns the ideal gas specific entropy of the whole mix
+//Returns the ideal gas specific entropy of the whole mix. This is the entropy per mole of /mixed/ gas.
/datum/gas_mixture/proc/specific_entropy()
if (!gas.len || total_moles == 0)
return SPECIFIC_ENTROPY_VACUUM
. = 0
for(var/g in gas)
- . += specific_entropy_gas(g)
+ var/ratio = gas[g] / total_moles
+ . += ratio * specific_entropy_gas(g)
. /= total_moles
-//Returns the ideal gas specific entropy of a specific gas in the mix
+//Returns the ideal gas specific entropy of a specific gas in the mix. This is the entropy per mole of /pure/ gas.
+//It's important not to get that mixed up with the mixed entropy, which takes into account mole ratios (I did, it was bad).
/datum/gas_mixture/proc/specific_entropy_gas(var/gasid)
- if (!(gasid in gas) || total_moles == 0)
+ if (!(gasid in gas) || gas[gasid] == 0)
return SPECIFIC_ENTROPY_VACUUM //that gas isn't here
- var/ratio = gas[gasid] / total_moles
var/molar_mass = gas_data.molar_mass[gasid]
var/specific_heat = gas_data.specific_heat[gasid]
- return R_IDEAL_GAS_EQUATION * ratio * ( log( IDEAL_GAS_ENTROPY_CONSTANT * volume / gas[gasid] * sqrt( ( molar_mass * specific_heat * temperature ) ** 3 ) + 1 ) + 5/2 )
+ return R_IDEAL_GAS_EQUATION * ( log( (IDEAL_GAS_ENTROPY_CONSTANT*volume/gas[gasid]) * sqrt((molar_mass*specific_heat*temperature)**3) + 1 ) + 5/2 )
//Updates the total_moles count and trims any empty gases.
/datum/gas_mixture/proc/update_values()
diff --git a/code/game/machinery/alarm.dm b/code/game/machinery/alarm.dm
index b0ddbd9f97..29aa09e633 100644
--- a/code/game/machinery/alarm.dm
+++ b/code/game/machinery/alarm.dm
@@ -802,7 +802,7 @@ Toxins: [phoron_percent]%
sensor_data += {"
[long_name][state]
Operating:
-[data["power"]?"on":"off"] Flow Rate: [data["flow_rate"]] L/s
+[data["power"]?"on":"off"]
Pressure checks:
external