Some cleanup for pumps and vent pumps

This commit is contained in:
mwerezak
2014-07-18 15:37:47 -04:00
parent c46904a3b6
commit 2ea947b15e
5 changed files with 137 additions and 165 deletions

View File

@@ -50,6 +50,7 @@
#include "code\_onclick\hud\screen_objects.dm"
#include "code\ATMOSPHERICS\_atmos_setup.dm"
#include "code\ATMOSPHERICS\atmospherics.dm"
#include "code\ATMOSPHERICS\atmospherics_helpers.dm"
#include "code\ATMOSPHERICS\datum_pipe_network.dm"
#include "code\ATMOSPHERICS\datum_pipeline.dm"
#include "code\ATMOSPHERICS\he_pipes.dm"

View File

@@ -0,0 +1,23 @@
//Calculates the amount of power needed to move one mole from source to sink.
/obj/machinery/atmospherics/proc/calculate_specific_power(datum/gas_mixture/source, datum/gas_mixture/sink)
//Calculate the amount of energy required
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
var/specific_entropy = sink.specific_entropy() - source.specific_entropy() //environment is gaining moles, air_contents is loosing
var/specific_power = 0 // W/mol
//If specific_entropy is < 0 then transfer_moles is limited by how powerful the pump is
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
return specific_power
//This proc handles power usages so that we only have to call use_power() when the pump is loaded but not at full load.
/obj/machinery/atmospherics/proc/handle_pump_power_draw(var/usage_amount)
if (usage_amount > active_power_usage - 5)
update_use_power(2)
else
update_use_power(1)
if (usage_amount > idle_power_usage)
use_power(round(usage_amount)) //in practice it's pretty rare that we will get here, so calling use_power() is alright.

View File

@@ -80,34 +80,35 @@ Thus, the two variables affect pump operation are set in New():
if(pressure_delta > 0.01 && (source.total_moles() > 0) && (source.temperature > 0 || sink.temperature > 0))
//Figure out how much gas to transfer
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
var/transfer_moles = calc_transfer_amount(pressure_delta)
//Calculate the amount of energy required
var/specific_entropy = sink.specific_entropy() - source.specific_entropy() //air2 is gaining moles, air1 is loosing
var/specific_power = 0 // W/mol
var/output_volume = sink.volume
if (network2 && network2.air_transient)
output_volume = network2.air_transient.volume //use the network volume if we can get it
//If specific_entropy is < 0 then transfer_moles is limited by how powerful the pump is
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
//Return the number of moles that would have to be transfered to bring sink to the target pressure
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
//Actually transfer the gas
var/input_pressure = source.return_pressure()
//Calculate the amount of energy required
var/specific_power = calculate_specific_power(source, sink) //this has to be calculated before we modify any gas mixtures
if (specific_power > 0)
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
var/power_draw = specific_power*transfer_moles
var/datum/gas_mixture/removed = source.remove(transfer_moles)
if (input_pressure > 0)
last_flow_rate = removed.total_moles()*R_IDEAL_GAS_EQUATION*removed.temperature/input_pressure
last_flow_rate = (removed.total_moles()/(removed.total_moles() + source.total_moles()))*source.volume
sink.merge(removed)
//If specific_entropy is < 0 then extra power needs to be supplied to move gas
if (specific_entropy < 0)
//pump draws power and heats gas according to 2nd law of thermodynamics
var/power_draw = round(transfer_moles*specific_power)
if (power_draw > 0)
sink.add_thermal_energy(power_draw)
handle_power_draw(power_draw)
last_power_draw = power_draw
else
handle_power_draw(idle_power_usage)
last_power_draw = idle_power_usage
sink.merge(removed)
if(network1)
network1.update = 1
@@ -120,19 +121,6 @@ Thus, the two variables affect pump operation are set in New():
return 1
/obj/machinery/atmospherics/binary/pump/proc/calc_transfer_amount(var/pressure_delta)
var/datum/gas_mixture/source = air1
var/datum/gas_mixture/sink = air2
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
var/output_volume = sink.volume
if (network2 && network2.air_transient)
output_volume = network2.air_transient.volume //use the network volume if we can get it
//Return the number of moles that would have to be transfered to bring sink to the target pressure
return pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
//This proc handles power usages so that we only have to call use_power() when the pump is loaded but not at full load.
/obj/machinery/atmospherics/binary/pump/proc/handle_power_draw(var/usage_amount)
if (usage_amount > active_power_usage - 5)
@@ -141,7 +129,7 @@ Thus, the two variables affect pump operation are set in New():
update_use_power(1)
if (usage_amount > idle_power_usage)
use_power(round(usage_amount)) //in practice it's pretty rare that we will get here, so calling use_power() is alright.
use_power(usage_amount) //in practice it's pretty rare that we will get here, so calling use_power() is alright.
last_power_draw = usage_amount

View File

@@ -1,3 +1,5 @@
#define DEFAULT_PRESSURE_DELTA 10000
#define EXTERNAL_PRESSURE_BOUND ONE_ATMOSPHERE
#define INTERNAL_PRESSURE_BOUND 0
#define PRESSURE_CHECKS 1
@@ -49,6 +51,9 @@
var/radio_filter_out
var/radio_filter_in
//this is used to ensure process() is run before broadcasting status
var/broadcast_status_update = 0
/obj/machinery/atmospherics/unary/vent_pump/on
on = 1
icon_state = "map_vent_out"
@@ -87,9 +92,6 @@
return
if (!node)
on = 0
//broadcast_status() // from now air alarm/control computer should request update purposely --rastaf0
if(!on)
return 0
overlays.Cut()
@@ -145,140 +147,90 @@
if(welded)
return 0
if(pump_direction) //internal -> external
pump_to_external()
else //external -> internal
pump_to_internal()
return 1
/obj/machinery/atmospherics/unary/vent_pump/proc/pump_to_external()
var/datum/gas_mixture/environment = loc.return_air()
var/environment_pressure = environment.return_pressure()
if(air_contents.temperature == 0 && environment.temperature == 0)
return 0
var/pressure_delta = 10000
var/pressure_delta = DEFAULT_PRESSURE_DELTA
if(pressure_delta > 0.5)
if(pump_direction) //internal -> external
if(pressure_checks & PRESSURE_CHECK_EXTERNAL)
pressure_delta = min(pressure_delta, (external_pressure_bound - environment_pressure))
pressure_delta = min(pressure_delta, external_pressure_bound - environment_pressure) //increasing the pressure here
if(pressure_checks & PRESSURE_CHECK_INTERNAL)
pressure_delta = min(pressure_delta, (air_contents.return_pressure() - internal_pressure_bound))
pressure_delta = min(pressure_delta, air_contents.return_pressure() - internal_pressure_bound) //decreasing the pressure here
if(pressure_delta > 0.5 && (air_contents.temperature > 0 || environment.temperature > 0))
//Figure out how much gas to transfer
//unfortunately there's no good way to get the volume of the room, so assume 10 tiles
//we might overshoot in small rooms when dealing with huge pressures but it won't be so bad
//Unfortunately there's no good way to get the volume of the room, so assume 10 tiles
//We will overshoot in small rooms when dealing with huge pressures but it won't be so bad
var/output_volume = environment.volume * 10
var/air_temperature = environment.temperature? environment.temperature : air_contents.temperature
var/air_temperature = environment.temperature? environment.volume : air_contents.temperature
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
//Calculate the amount of energy required
var/specific_entropy = environment.specific_entropy() - air_contents.specific_entropy() //environment is gaining moles, air_contents is loosing
var/specific_power = 0 // W/mol
//If specific_entropy is < 0 then transfer_moles is limited by how powerful the pump is
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
//Get the gas to be transferred
var/input_pressure = air_contents.return_pressure()
var/datum/gas_mixture/removed = air_contents.remove(transfer_moles)
if (isnull(removed)) //not sure why this would happen, but it does at the very beginning of the game
update_use_power(0)
return
if (input_pressure > 0)
last_flow_rate = removed.total_moles()*R_IDEAL_GAS_EQUATION*removed.temperature/input_pressure
//If specific_entropy is < 0 then extra power needs to be supplied to move gas
if (specific_entropy < 0)
//pump draws power and heats gas according to 2nd law of thermodynamics
var/power_draw = round(transfer_moles*specific_power)
removed.add_thermal_energy(power_draw)
handle_power_draw(power_draw)
else
handle_power_draw(idle_power_usage)
loc.assume_air(removed)
if(network)
network.update = 1
else
update_use_power(0)
//This is largely identical to pump_to_external(), except since the source and sink are two different types we can't just reuse the same proc :(
/obj/machinery/atmospherics/unary/vent_pump/proc/pump_to_internal()
var/datum/gas_mixture/environment = loc.return_air()
var/environment_pressure = environment.return_pressure()
var/pressure_delta = 10000
transfer_gas(air_contents, environment, transfer_moles)
else //external -> internal
if(pressure_checks & PRESSURE_CHECK_EXTERNAL)
pressure_delta = min(pressure_delta, (environment_pressure - external_pressure_bound))
pressure_delta = min(pressure_delta, environment_pressure - external_pressure_bound) //decreasing the pressure here
if(pressure_checks & PRESSURE_CHECK_INTERNAL)
pressure_delta = min(pressure_delta, (internal_pressure_bound - air_contents.return_pressure()))
pressure_delta = min(pressure_delta, internal_pressure_bound - air_contents.return_pressure()) //increasing the pressure here
if(pressure_delta > 0.5 && (air_contents.temperature > 0 || environment.temperature > 0))
//Figure out how much gas to transfer
var/output_volume = air_contents.volume
if (network && network.air_transient)
output_volume = network.air_transient.volume //use the network volume if we can get it
var/air_temperature = air_contents.temperature? air_contents.temperature : environment.temperature
var/transfer_moles = pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
//Calculate the amount of energy required
var/specific_entropy = air_contents.specific_entropy() - environment.specific_entropy() //air_contents is gaining moles, environment is loosing
var/specific_power = 0 // W/mol
//If specific_entropy is < 0 then transfer_moles is limited by how powerful the pump is
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
//Get the gas to be transferred
var/input_pressure = environment.return_pressure()
var/datum/gas_mixture/removed = loc.remove_air(transfer_moles)
if (isnull(removed)) //in space
update_use_power(0)
return
if (input_pressure > 0)
last_flow_rate = removed.total_moles()*R_IDEAL_GAS_EQUATION*removed.temperature/input_pressure
//If specific_entropy is < 0 then extra power needs to be supplied to move gas
if (specific_entropy < 0)
//pump draws power and heats gas according to 2nd law of thermodynamics
var/power_draw = round(transfer_moles*specific_power)
removed.add_thermal_energy(power_draw)
handle_power_draw(power_draw)
else
handle_power_draw(idle_power_usage)
air_contents.merge(removed)
transfer_gas(environment, air_contents, transfer_moles)
if(network)
network.update = 1
else
update_use_power(0)
//This proc handles power usages so that we only have to call use_power() when the pump is loaded but not at full load.
/obj/machinery/atmospherics/unary/vent_pump/proc/handle_power_draw(var/usage_amount)
if (usage_amount > active_power_usage - 5)
update_use_power(2)
process_broadcast_status()
return 1
/obj/machinery/atmospherics/unary/vent_pump/proc/transfer_gas(datum/gas_mixture/source, datum/gas_mixture/sink, var/transfer_moles)
if(source.total_moles() == 0)
update_use_power(0)
return
//limit transfer_moles by available power
var/specific_power = calculate_specific_power(source, sink) //this has to be calculated before we modify any gas mixtures
if (specific_power > 0)
transfer_moles = min(transfer_moles, active_power_usage / specific_power)
//Get the gas to be transferred
var/datum/gas_mixture/removed = source.remove(transfer_moles)
if (isnull(removed)) //not sure why this would happen, but it does at the very beginning of the game
return
last_flow_rate = (removed.total_moles()/(removed.total_moles() + source.total_moles()))*source.volume
var/power_draw = specific_power*transfer_moles
if (power_draw > 0)
removed.add_thermal_energy(power_draw)
handle_pump_power_draw(power_draw)
last_power_draw = power_draw
else
update_use_power(1)
handle_pump_power_draw(idle_power_usage)
last_power_draw = idle_power_usage
if (usage_amount > idle_power_usage)
use_power(round(usage_amount))
//merge the removed gas into the sink
sink.merge(removed)
last_power_draw = usage_amount
/* Uncomment this in case it actually matters whether we call assume_air() or just merge with the returned air directly
if (istype(sink, /datum/gas_mixture)
var/datum/gas_mixture/M = sink
M.merge(removed)
else if (istype(sink, /turf)
var/turf/T = sink
T.assume_air(removed)
*/
//Radio remote control
@@ -289,6 +241,14 @@
radio_connection = radio_controller.add_object(src, frequency,radio_filter_in)
/obj/machinery/atmospherics/unary/vent_pump/proc/broadcast_status()
broadcast_status_update = 1
/obj/machinery/atmospherics/unary/vent_pump/proc/process_broadcast_status()
if (!broadcast_status_update)
return 0
broadcast_status_update = 0
if(!radio_connection)
return 0

View File

@@ -105,7 +105,7 @@
{{:value.title}}:
</div>
<div class="itemContent" style="width: 70px; text-align: right">
{{:value.powerLoad}} W
{{:value.powerLoad}}&nbsp;W
</div>
<div class="itemContent" style="width: 105px">
&nbsp;&nbsp;
@@ -136,8 +136,8 @@
<div class="itemLabel">
Total Load:
</div>
<div class="itemContent" style="width: 70px; text-align: right">
{{:data.totalLoad}} W
<div class="itemContent">
{{:data.totalLoad}}&nbsp;W
</div>
</div>