#define SOLAR_UPDATE_TIME 600 //duration between two updates of the whole sun/solars positions /datum/sun var/angle var/dx var/dy var/rate var/list/solars // for debugging purposes, references solars_list at the constructor var/solar_next_update // last time the sun position was checked and adjusted /datum/sun/New() solars = solars_list rate = rand(50,200)/100 // 50% - 200% of standard rotation if(prob(50)) // same chance to rotate clockwise than counter-clockwise rate = -rate solar_next_update = world.time // init the timer angle = rand (0,360) // the station position to the sun is randomised at round start /*/hook/startup/proc/createSun() // handled in scheduler sun = new /datum/sun() return 1*/ // calculate the sun's position given the time of day // at the standard rate (100%) the angle is increase/decreased by 6 degrees every minute. // a full rotation thus take a game hour in that case /datum/sun/proc/calc_position() if(world.time < solar_next_update) //if less than 60 game secondes have passed, do nothing return; angle = (360 + angle + rate * 6) % 360 // increase/decrease the angle to the sun, adjusted by the rate solar_next_update += SOLAR_UPDATE_TIME // since we updated the angle, set the proper time for the next loop // now calculate and cache the (dx,dy) increments for line drawing var/s = sin(angle) var/c = cos(angle) // Either "abs(s) < abs(c)" or "abs(s) >= abs(c)" // In both cases, the greater is greater than 0, so, no "if 0" check is needed for the divisions if( abs(s) < abs(c)) dx = s / abs(c) dy = c / abs(c) else dx = s/abs(s) dy = c / abs(s) //now tell the solar control computers to update their status and linked devices for(var/obj/machinery/power/solar_control/SC in solars_list) if(!SC.powernet) solars_list.Remove(SC) continue SC.update()