// todo: DO NOT FUCKING USE THIS // it is *EXTREMELY* inefficient, and scales up quadratically in time complexity // DO NOT USE THIS UNTIL IT IS REWRITTEN // notably that "bad node trimming" is actually horrifying. /** * A Star pathfinding algorithm * * This file's AStar should not be used generally; it's the generic graph search algorithm, as opposed * to the optimized turf-grid-only search algorithm. * * Returns a list of tiles forming a path from A to B, taking dense objects as well as walls, and the orientation of * windows along the route into account. * * * Use: * your_list = AStar(start location, end location, adjacent turf proc, distance proc) * For the adjacent turf proc i wrote: * /turf/proc/AdjacentTurfs * And for the distance one i wrote: * /turf/proc/Distance * * So an example use might be: * * src.path_list = AStar(src.loc, target.loc, TYPE_PROC_REF(/turf, AdjacentTurfs), TYPE_PROC_REF(/turf, Distance)) * * Note: The path is returned starting at the END node, so i wrote reverselist to reverse it for ease of use. * * src.path_list = reverselist(src.pathlist) * * Then to start on the path, all you need to do it: * Step_to(src, src.path_list[1]) * src.path_list -= src.path_list[1] or equivilent to remove that node from the list. * * Optional extras to add on (in order): * MaxNodes: The maximum number of nodes the returned path can be (0 = infinite) * Maxnodedepth: The maximum number of nodes to search (default: 30, 0 = infinite) * Mintargetdist: Minimum distance to the target before path returns, could be used to get * near a target, but not right to it - for an AI mob with a gun, for example. * Minnodedist: Minimum number of nodes to return in the path, could be used to give a path a minimum * length to avoid portals or something i guess?? Not that they're counted right now but w/e. */ // Modified to provide ID argument - supplied to 'adjacent' proc, defaults to null // Used for checking if route exists through a door which can be opened // Also added 'exclude' turf to avoid travelling over; defaults to null /datum/graph_astar_node var/datum/position var/datum/graph_astar_node/previous_node var/best_estimated_cost var/estimated_cost var/known_cost var/cost var/nodes_traversed /datum/graph_astar_node/New(_position, _previous_node, _known_cost, _cost, _nodes_traversed) position = _position previous_node = _previous_node known_cost = _known_cost cost = _cost estimated_cost = cost + known_cost best_estimated_cost = estimated_cost nodes_traversed = _nodes_traversed /proc/cmp_graph_astar_node(datum/graph_astar_node/a, datum/graph_astar_node/b) return a.estimated_cost - b.estimated_cost /proc/graph_astar(start, end, adjacent, dist, max_nodes, max_node_depth = 30, min_target_dist = 0, min_node_dist, id, datum/exclude) var/datum/priority_queue/open = new /datum/priority_queue(/proc/cmp_graph_astar_node) var/list/closed = list() var/list/path var/list/path_node_by_position = list() start = get_turf(start) if(!start) return 0 open.enqueue(new /datum/graph_astar_node(start, null, 0, call(start, dist)(end), 0)) while(!open.is_empty() && !path) var/datum/graph_astar_node/current = open.dequeue() closed.Add(current.position) if(current.position == end || call(current.position, dist)(end) <= min_target_dist) path = new /list(current.nodes_traversed + 1) path[path.len] = current.position var/index = path.len - 1 while(current.previous_node) current = current.previous_node path[index--] = current.position break if(min_node_dist && max_node_depth) if(call(current.position, min_node_dist)(end) + current.nodes_traversed >= max_node_depth) continue if(max_node_depth) if(current.nodes_traversed >= max_node_depth) continue for(var/datum/datum in call(current.position, adjacent)(id)) if(datum == exclude) continue var/best_estimated_cost = current.estimated_cost + call(current.position, dist)(datum) //handle removal of sub-par positions if(datum in path_node_by_position) var/datum/graph_astar_node/target = path_node_by_position[datum] if(target.best_estimated_cost) if(best_estimated_cost + call(datum, dist)(end) < target.best_estimated_cost) open.remove_entry(target) else continue var/datum/graph_astar_node/next_node = new (datum, current, best_estimated_cost, call(datum, dist)(end), current.nodes_traversed + 1) path_node_by_position[datum] = next_node open.enqueue(next_node) if(max_nodes && length(open.array) > max_nodes) open.remove_index(length(open.array)) return path