Files
CHOMPStation2/code/__HELPERS/maths.dm

119 lines
2.6 KiB
Plaintext

// Credits to Nickr5 for the useful procs I've taken from his library resource.
var/const/E = 2.71828183
var/const/Sqrt2 = 1.41421356
// List of square roots for the numbers 1-100.
var/list/sqrtTable = list(1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10)
/proc/Atan2(x, y)
if(!x && !y) return 0
var/a = arccos(x / sqrt(x*x + y*y))
return y >= 0 ? a : -a
/proc/Ceiling(x)
return -round(-x)
/proc/Clamp(val, min, max)
return max(min, min(val, max))
// cotangent
/proc/Cot(x)
return 1 / Tan(x)
// cosecant
/proc/Csc(x)
return 1 / sin(x)
/proc/Default(a, b)
return a ? a : b
/proc/Floor(x)
return round(x)
// Greatest Common Divisor - Euclid's algorithm
/proc/Gcd(a, b)
return b ? Gcd(b, a % b) : a
/proc/Inverse(x)
return 1 / x
/proc/IsAboutEqual(a, b, deviation = 0.1)
return abs(a - b) <= deviation
/proc/IsEven(x)
return x % 2 == 0
// Returns true if val is from min to max, inclusive.
/proc/IsInRange(val, min, max)
return min <= val && val <= max
/proc/IsInteger(x)
return Floor(x) == x
/proc/IsOdd(x)
return !IsEven(x)
/proc/IsMultiple(x, y)
return x % y == 0
// Least Common Multiple
/proc/Lcm(a, b)
return abs(a) / Gcd(a, b) * abs(b)
// Performs a linear interpolation between a and b.
// Note that amount=0 returns a, amount=1 returns b, and
// amount=0.5 returns the mean of a and b.
/proc/Lerp(a, b, amount = 0.5)
return a + (b - a) * amount
/proc/Mean(...)
var/values = 0
var/sum = 0
for(var/val in args)
values++
sum += val
return sum / values
// Returns the nth root of x.
/proc/Root(n, x)
return x ** (1 / n)
// secant
/proc/Sec(x)
return 1 / cos(x)
// The quadratic formula. Returns a list with the solutions, or an empty list
// if they are imaginary.
/proc/SolveQuadratic(a, b, c)
ASSERT(a)
. = list()
var/d = b*b - 4 * a * c
var/bottom = 2 * a
if(d < 0) return
var/root = sqrt(d)
. += (-b + root) / bottom
if(!d) return
. += (-b - root) / bottom
// tangent
/proc/Tan(x)
return sin(x) / cos(x)
/proc/ToDegrees(radians)
// 180 / Pi
return radians * 57.2957795
/proc/ToRadians(degrees)
// Pi / 180
return degrees * 0.0174532925
// min is inclusive, max is exclusive
/proc/Wrap(val, min, max)
var/d = max - min
var/t = Floor((val - min) / d)
return val - (t * d)