Files
CHOMPStation2/code/ATMOSPHERICS/_atmospherics_helpers.dm
Leshana 131636c6b5 Fix pipe construction conflicting with existing pipes too much.
Bug in the init_dirs_cache was not setting direction of pipes, making all cached dirs be for south.
Because mapped in pipes didn't have piping layer set, mapped in pipes conflicted.
The full-tile check for unary machines forgot to exclude *itself*
2018-03-20 23:30:05 -04:00

495 lines
23 KiB
Plaintext

/*
Atmos processes
These procs generalize various processes used by atmos machinery, such as pumping, filtering, or scrubbing gas, allowing them to be reused elsewhere.
If no gas was moved/pumped/filtered/whatever, they return a negative number.
Otherwise they return the amount of energy needed to do whatever it is they do (equivalently power if done over 1 second).
In the case of free-flowing gas you can do things with gas and still use 0 power, hence the distinction between negative and non-negative return values.
*/
/obj/machinery/atmospherics/var/last_flow_rate = 0
/obj/machinery/atmospherics/var/last_power_draw = 0
/obj/machinery/portable_atmospherics/var/last_flow_rate = 0
/obj/machinery/atmospherics/var/debug = 0
/client/proc/atmos_toggle_debug(var/obj/machinery/atmospherics/M in view())
set name = "Toggle Debug Messages"
set category = "Debug"
M.debug = !M.debug
usr << "[M]: Debug messages toggled [M.debug? "on" : "off"]."
//Generalized gas pumping proc.
//Moves gas from one gas_mixture to another and returns the amount of power needed (assuming 1 second), or -1 if no gas was pumped.
//transfer_moles - Limits the amount of moles to transfer. The actual amount of gas moved may also be limited by available_power, if given.
//available_power - the maximum amount of power that may be used when moving gas. If null then the transfer is not limited by power.
/proc/pump_gas(var/obj/machinery/M, var/datum/gas_mixture/source, var/datum/gas_mixture/sink, var/transfer_moles = null, var/available_power = null)
if (source.total_moles < MINIMUM_MOLES_TO_PUMP) //if we cant transfer enough gas just stop to avoid further processing
return -1
if (isnull(transfer_moles))
transfer_moles = source.total_moles
else
transfer_moles = min(source.total_moles, transfer_moles)
//Calculate the amount of energy required and limit transfer_moles based on available power
var/specific_power = calculate_specific_power(source, sink)/ATMOS_PUMP_EFFICIENCY //this has to be calculated before we modify any gas mixtures
if (!isnull(available_power) && specific_power > 0)
transfer_moles = min(transfer_moles, available_power / specific_power)
if (transfer_moles < MINIMUM_MOLES_TO_PUMP) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update flow rate meter
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
if (A.debug)
A.visible_message("[A]: source entropy: [round(source.specific_entropy(), 0.01)] J/Kmol --> sink entropy: [round(sink.specific_entropy(), 0.01)] J/Kmol")
A.visible_message("[A]: specific entropy change = [round(sink.specific_entropy() - source.specific_entropy(), 0.01)] J/Kmol")
A.visible_message("[A]: specific power = [round(specific_power, 0.1)] W/mol")
A.visible_message("[A]: moles transferred = [transfer_moles] mol")
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
var/datum/gas_mixture/removed = source.remove(transfer_moles)
if (!removed) //Just in case
return -1
var/power_draw = specific_power*transfer_moles
sink.merge(removed)
return power_draw
//Gas 'pumping' proc for the case where the gas flow is passive and driven entirely by pressure differences (but still one-way).
/proc/pump_gas_passive(var/obj/machinery/M, var/datum/gas_mixture/source, var/datum/gas_mixture/sink, var/transfer_moles = null)
if (source.total_moles < MINIMUM_MOLES_TO_PUMP) //if we cant transfer enough gas just stop to avoid further processing
return -1
if (isnull(transfer_moles))
transfer_moles = source.total_moles
else
transfer_moles = min(source.total_moles, transfer_moles)
var/equalize_moles = calculate_equalize_moles(source, sink)
transfer_moles = min(transfer_moles, equalize_moles)
if (transfer_moles < MINIMUM_MOLES_TO_PUMP) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update flow rate meter
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
if (A.debug)
A.visible_message("[A]: moles transferred = [transfer_moles] mol")
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
var/datum/gas_mixture/removed = source.remove(transfer_moles)
if(!removed) //Just in case
return -1
sink.merge(removed)
return 0
//Generalized gas scrubbing proc.
//Selectively moves specified gasses one gas_mixture to another and returns the amount of power needed (assuming 1 second), or -1 if no gas was filtered.
//filtering - A list of gasids to be scrubbed from source
//total_transfer_moles - Limits the amount of moles to scrub. The actual amount of gas scrubbed may also be limited by available_power, if given.
//available_power - the maximum amount of power that may be used when scrubbing gas. If null then the scrubbing is not limited by power.
/proc/scrub_gas(var/obj/machinery/M, var/list/filtering, var/datum/gas_mixture/source, var/datum/gas_mixture/sink, var/total_transfer_moles = null, var/available_power = null)
if (source.total_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
filtering = filtering & source.gas //only filter gasses that are actually there. DO NOT USE &=
//Determine the specific power of each filterable gas type, and the total amount of filterable gas (gasses selected to be scrubbed)
var/total_filterable_moles = 0 //the total amount of filterable gas
var/list/specific_power_gas = list() //the power required to remove one mole of pure gas, for each gas type
for (var/g in filtering)
if (source.gas[g] < MINIMUM_MOLES_TO_FILTER)
continue
var/specific_power = calculate_specific_power_gas(g, source, sink)/ATMOS_FILTER_EFFICIENCY
specific_power_gas[g] = specific_power
total_filterable_moles += source.gas[g]
if (total_filterable_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
//now that we know the total amount of filterable gas, we can calculate the amount of power needed to scrub one mole of gas
var/total_specific_power = 0 //the power required to remove one mole of filterable gas
for (var/g in filtering)
var/ratio = source.gas[g]/total_filterable_moles //this converts the specific power per mole of pure gas to specific power per mole of scrubbed gas
total_specific_power += specific_power_gas[g]*ratio
//Figure out how much of each gas to filter
if (isnull(total_transfer_moles))
total_transfer_moles = total_filterable_moles
else
total_transfer_moles = min(total_transfer_moles, total_filterable_moles)
//limit transfer_moles based on available power
if (!isnull(available_power) && total_specific_power > 0)
total_transfer_moles = min(total_transfer_moles, available_power/total_specific_power)
if (total_transfer_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update flow rate var
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
var/power_draw = 0
for (var/g in filtering)
var/transfer_moles = source.gas[g]
//filter gas in proportion to the mole ratio
transfer_moles = min(transfer_moles, total_transfer_moles*(source.gas[g]/total_filterable_moles))
//use update=0. All the filtered gasses are supposed to be added simultaneously, so we update after the for loop.
source.adjust_gas(g, -transfer_moles, update=0)
sink.adjust_gas_temp(g, transfer_moles, source.temperature, update=0)
power_draw += specific_power_gas[g]*transfer_moles
//Remix the resulting gases
sink.update_values()
source.update_values()
return power_draw
//Generalized gas filtering proc.
//Filtering is a bit different from scrubbing. Instead of selectively moving the targeted gas types from one gas mix to another, filtering splits
//the input gas into two outputs: one that contains /only/ the targeted gas types, and another that completely clean of the targeted gas types.
//filtering - A list of gasids to be filtered. These gasses get moved to sink_filtered, while the other gasses get moved to sink_clean.
//total_transfer_moles - Limits the amount of moles to input. The actual amount of gas filtered may also be limited by available_power, if given.
//available_power - the maximum amount of power that may be used when filtering gas. If null then the filtering is not limited by power.
/proc/filter_gas(var/obj/machinery/M, var/list/filtering, var/datum/gas_mixture/source, var/datum/gas_mixture/sink_filtered, var/datum/gas_mixture/sink_clean, var/total_transfer_moles = null, var/available_power = null)
if (source.total_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
filtering = filtering & source.gas //only filter gasses that are actually there. DO NOT USE &=
var/total_specific_power = 0 //the power required to remove one mole of input gas
var/total_filterable_moles = 0 //the total amount of filterable gas
var/total_unfilterable_moles = 0 //the total amount of non-filterable gas
var/list/specific_power_gas = list() //the power required to remove one mole of pure gas, for each gas type
for (var/g in source.gas)
if (source.gas[g] < MINIMUM_MOLES_TO_FILTER)
continue
if (g in filtering)
specific_power_gas[g] = calculate_specific_power_gas(g, source, sink_filtered)/ATMOS_FILTER_EFFICIENCY
total_filterable_moles += source.gas[g]
else
specific_power_gas[g] = calculate_specific_power_gas(g, source, sink_clean)/ATMOS_FILTER_EFFICIENCY
total_unfilterable_moles += source.gas[g]
var/ratio = source.gas[g]/source.total_moles //converts the specific power per mole of pure gas to specific power per mole of input gas mix
total_specific_power += specific_power_gas[g]*ratio
//Figure out how much of each gas to filter
if (isnull(total_transfer_moles))
total_transfer_moles = source.total_moles
else
total_transfer_moles = min(total_transfer_moles, source.total_moles)
//limit transfer_moles based on available power
if (!isnull(available_power) && total_specific_power > 0)
total_transfer_moles = min(total_transfer_moles, available_power/total_specific_power)
if (total_transfer_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update flow rate var
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
var/datum/gas_mixture/removed = source.remove(total_transfer_moles)
if (!removed) //Just in case
return -1
var/filtered_power_used = 0 //power used to move filterable gas to sink_filtered
var/unfiltered_power_used = 0 //power used to move unfilterable gas to sink_clean
for (var/g in removed.gas)
var/power_used = specific_power_gas[g]*removed.gas[g]
if (g in filtering)
//use update=0. All the filtered gasses are supposed to be added simultaneously, so we update after the for loop.
sink_filtered.adjust_gas_temp(g, removed.gas[g], removed.temperature, update=0)
removed.adjust_gas(g, -removed.gas[g], update=0)
filtered_power_used += power_used
else
unfiltered_power_used += power_used
sink_filtered.update_values()
removed.update_values()
sink_clean.merge(removed)
return filtered_power_used + unfiltered_power_used
//For omni devices. Instead filtering is an associative list mapping gasids to gas mixtures.
//I don't like the copypasta, but I decided to keep both versions of gas filtering as filter_gas is slightly faster (doesn't create as many temporary lists, doesn't call update_values() as much)
//filter_gas can be removed and replaced with this proc if need be.
/proc/filter_gas_multi(var/obj/machinery/M, var/list/filtering, var/datum/gas_mixture/source, var/datum/gas_mixture/sink_clean, var/total_transfer_moles = null, var/available_power = null)
if (source.total_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
filtering = filtering & source.gas //only filter gasses that are actually there. DO NOT USE &=
var/total_specific_power = 0 //the power required to remove one mole of input gas
var/total_filterable_moles = 0 //the total amount of filterable gas
var/total_unfilterable_moles = 0 //the total amount of non-filterable gas
var/list/specific_power_gas = list() //the power required to remove one mole of pure gas, for each gas type
for (var/g in source.gas)
if (source.gas[g] < MINIMUM_MOLES_TO_FILTER)
continue
if (g in filtering)
var/datum/gas_mixture/sink_filtered = filtering[g]
specific_power_gas[g] = calculate_specific_power_gas(g, source, sink_filtered)/ATMOS_FILTER_EFFICIENCY
total_filterable_moles += source.gas[g]
else
specific_power_gas[g] = calculate_specific_power_gas(g, source, sink_clean)/ATMOS_FILTER_EFFICIENCY
total_unfilterable_moles += source.gas[g]
var/ratio = source.gas[g]/source.total_moles //converts the specific power per mole of pure gas to specific power per mole of input gas mix
total_specific_power += specific_power_gas[g]*ratio
//Figure out how much of each gas to filter
if (isnull(total_transfer_moles))
total_transfer_moles = source.total_moles
else
total_transfer_moles = min(total_transfer_moles, source.total_moles)
//limit transfer_moles based on available power
if (!isnull(available_power) && total_specific_power > 0)
total_transfer_moles = min(total_transfer_moles, available_power/total_specific_power)
if (total_transfer_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update Flow Rate var
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (total_transfer_moles/source.total_moles)*source.volume //group_multiplier gets divided out here
var/datum/gas_mixture/removed = source.remove(total_transfer_moles)
if (!removed) //Just in case
return -1
var/list/filtered_power_used = list() //power used to move filterable gas to the filtered gas mixes
var/unfiltered_power_used = 0 //power used to move unfilterable gas to sink_clean
for (var/g in removed.gas)
var/power_used = specific_power_gas[g]*removed.gas[g]
if (g in filtering)
var/datum/gas_mixture/sink_filtered = filtering[g]
//use update=0. All the filtered gasses are supposed to be added simultaneously, so we update after the for loop.
sink_filtered.adjust_gas_temp(g, removed.gas[g], removed.temperature, update=1)
removed.adjust_gas(g, -removed.gas[g], update=0)
if (power_used)
filtered_power_used[sink_filtered] = power_used
else
unfiltered_power_used += power_used
removed.update_values()
var/power_draw = unfiltered_power_used
for (var/datum/gas_mixture/sink_filtered in filtered_power_used)
power_draw += filtered_power_used[sink_filtered]
sink_clean.merge(removed)
return power_draw
//Similar deal as the other atmos process procs.
//mix_sources maps input gas mixtures to mix ratios. The mix ratios MUST add up to 1.
/proc/mix_gas(var/obj/machinery/M, var/list/mix_sources, var/datum/gas_mixture/sink, var/total_transfer_moles = null, var/available_power = null)
if (!mix_sources.len)
return -1
var/total_specific_power = 0 //the power needed to mix one mole of gas
var/total_mixing_moles = null //the total amount of gas that can be mixed, given our mix ratios
var/total_input_volume = 0 //for flow rate calculation
var/total_input_moles = 0 //for flow rate calculation
var/list/source_specific_power = list()
for (var/datum/gas_mixture/source in mix_sources)
if (source.total_moles < MINIMUM_MOLES_TO_FILTER)
return -1 //either mix at the set ratios or mix no gas at all
var/mix_ratio = mix_sources[source]
if (!mix_ratio)
continue //this gas is not being mixed in
//mixing rate is limited by the source with the least amount of available gas
var/this_mixing_moles = source.total_moles/mix_ratio
if (isnull(total_mixing_moles) || total_mixing_moles > this_mixing_moles)
total_mixing_moles = this_mixing_moles
source_specific_power[source] = calculate_specific_power(source, sink)*mix_ratio/ATMOS_FILTER_EFFICIENCY
total_specific_power += source_specific_power[source]
total_input_volume += source.volume
total_input_moles += source.total_moles
if (total_mixing_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
if (isnull(total_transfer_moles))
total_transfer_moles = total_mixing_moles
else
total_transfer_moles = min(total_mixing_moles, total_transfer_moles)
//limit transfer_moles based on available power
if (!isnull(available_power) && total_specific_power > 0)
total_transfer_moles = min(total_transfer_moles, available_power / total_specific_power)
if (total_transfer_moles < MINIMUM_MOLES_TO_FILTER) //if we cant transfer enough gas just stop to avoid further processing
return -1
//Update flow rate var
if (istype(M, /obj/machinery/atmospherics))
var/obj/machinery/atmospherics/A = M
A.last_flow_rate = (total_transfer_moles/total_input_moles)*total_input_volume //group_multiplier gets divided out here
if (istype(M, /obj/machinery/portable_atmospherics))
var/obj/machinery/portable_atmospherics/P = M
P.last_flow_rate = (total_transfer_moles/total_input_moles)*total_input_volume //group_multiplier gets divided out here
var/total_power_draw = 0
for (var/datum/gas_mixture/source in mix_sources)
var/mix_ratio = mix_sources[source]
if (!mix_ratio)
continue
var/transfer_moles = total_transfer_moles * mix_ratio
var/datum/gas_mixture/removed = source.remove(transfer_moles)
var/power_draw = transfer_moles * source_specific_power[source]
total_power_draw += power_draw
sink.merge(removed)
return total_power_draw
/*
Helper procs for various things.
*/
//Calculates the amount of power needed to move one mole from source to sink.
/proc/calculate_specific_power(datum/gas_mixture/source, datum/gas_mixture/sink)
//Calculate the amount of energy required
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
var/specific_entropy = sink.specific_entropy() - source.specific_entropy() //sink is gaining moles, source is loosing
var/specific_power = 0 // W/mol
//If specific_entropy is < 0 then power is required to move gas
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
return specific_power
//Calculates the amount of power needed to move one mole of a certain gas from source to sink.
/proc/calculate_specific_power_gas(var/gasid, datum/gas_mixture/source, datum/gas_mixture/sink)
//Calculate the amount of energy required
var/air_temperature = (sink.temperature > 0)? sink.temperature : source.temperature
var/specific_entropy = sink.specific_entropy_gas(gasid) - source.specific_entropy_gas(gasid) //sink is gaining moles, source is loosing
var/specific_power = 0 // W/mol
//If specific_entropy is < 0 then power is required to move gas
if (specific_entropy < 0)
specific_power = -specific_entropy*air_temperature //how much power we need per mole
return specific_power
//Calculates the APPROXIMATE amount of moles that would need to be transferred to change the pressure of sink by pressure_delta
//If set, sink_volume_mod adjusts the effective output volume used in the calculation. This is useful when the output gas_mixture is
//part of a pipenetwork, and so it's volume isn't representative of the actual volume since the gas will be shared across the pipenetwork when it processes.
/proc/calculate_transfer_moles(datum/gas_mixture/source, datum/gas_mixture/sink, var/pressure_delta, var/sink_volume_mod=0)
if(source.temperature == 0 || source.total_moles == 0) return 0
var/output_volume = (sink.volume * sink.group_multiplier) + sink_volume_mod
var/source_total_moles = source.total_moles * source.group_multiplier
var/air_temperature = source.temperature
if(sink.total_moles > 0 && sink.temperature > 0)
//estimate the final temperature of the sink after transfer
var/estimate_moles = pressure_delta*output_volume/(sink.temperature * R_IDEAL_GAS_EQUATION)
var/sink_heat_capacity = sink.heat_capacity()
var/transfer_heat_capacity = source.heat_capacity()*estimate_moles/source_total_moles
air_temperature = (sink.temperature*sink_heat_capacity + source.temperature*transfer_heat_capacity) / (sink_heat_capacity + transfer_heat_capacity)
//get the number of moles that would have to be transfered to bring sink to the target pressure
return pressure_delta*output_volume/(air_temperature * R_IDEAL_GAS_EQUATION)
//Calculates the APPROXIMATE amount of moles that would need to be transferred to bring source and sink to the same pressure
/proc/calculate_equalize_moles(datum/gas_mixture/source, datum/gas_mixture/sink)
if(source.temperature == 0) return 0
//Make the approximation that the sink temperature is unchanged after transferring gas
var/source_volume = source.volume * source.group_multiplier
var/sink_volume = sink.volume * sink.group_multiplier
var/source_pressure = source.return_pressure()
var/sink_pressure = sink.return_pressure()
return (source_pressure - sink_pressure)/(R_IDEAL_GAS_EQUATION * (source.temperature/source_volume + sink.temperature/sink_volume))
//
// Debugging helper procs
//
/proc/atmos_piping_layer_str(piping_layer)
switch(piping_layer)
if(PIPING_LAYER_SUPPLY)
return "SUPPLY"
if(PIPING_LAYER_REGULAR)
return "REGULAR"
if(PIPING_LAYER_SCRUBBER)
return "SCRUBBER"
/proc/atmos_pipe_flags_str(pipe_flags)
var/list/dat = list()
if(pipe_flags & PIPING_ALL_LAYER)
dat += "ALL_LAYER"
if(pipe_flags & PIPING_ONE_PER_TURF)
dat += "ONE_PER_TURF"
if(pipe_flags & PIPING_DEFAULT_LAYER_ONLY)
dat += "DEFAULT_LAYER_ONLY"
if(pipe_flags & PIPING_CARDINAL_AUTONORMALIZE)
dat += "CARDINAL_AUTONORMALIZE"
return dat.Join("|")
/proc/atmos_connect_types_str(connect_types)
var/list/dat = list()
if(connect_types & CONNECT_TYPE_REGULAR)
dat += "REGULAR"
if(connect_types & CONNECT_TYPE_SUPPLY)
dat += "SUPPLY"
if(connect_types & CONNECT_TYPE_SCRUBBER)
dat += "SCRUBBER"
if(connect_types & CONNECT_TYPE_HE)
dat += "HE"
return dat.Join("|")