Files
CHOMPStation2/code/ZAS/ConnectionGroup.dm
2014-02-19 17:11:09 -07:00

344 lines
11 KiB
Plaintext

/connection_edge/var/zone/A
/connection_edge/var/list/connecting_turfs = list()
/connection_edge/var/coefficient = 0
/connection_edge/var/id
/connection_edge/New()
CRASH("Cannot make connection edge without specifications.")
/connection_edge/proc/add_connection(connection/c)
coefficient++
//world << "Connection added. Coefficient: [coefficient]"
/connection_edge/proc/remove_connection(connection/c)
//world << "Connection removed. Coefficient: [coefficient-1]"
coefficient--
if(coefficient <= 0)
erase()
/connection_edge/proc/contains_zone(zone/Z)
/connection_edge/proc/erase()
air_master.remove_edge(src)
//world << "Erased."
/connection_edge/proc/tick()
/connection_edge/proc/flow(list/movable, differential, repelled)
for(var/atom/movable/M in movable)
//If they're already being tossed, don't do it again.
if(M.last_airflow > world.time - vsc.airflow_delay) continue
if(M.airflow_speed) continue
//Check for knocking people over
if(ismob(M) && differential > vsc.airflow_stun_pressure)
if(M:status_flags & GODMODE) continue
M:airflow_stun()
if(M.check_airflow_movable(differential))
//Check for things that are in range of the midpoint turfs.
var/list/close_turfs = list()
for(var/turf/U in connecting_turfs)
if(get_dist(M,U) < world.view) close_turfs += U
if(!close_turfs.len) continue
M.airflow_dest = pick(close_turfs) //Pick a random midpoint to fly towards.
if(repelled) spawn if(M) M.RepelAirflowDest(differential/5)
else spawn if(M) M.GotoAirflowDest(differential/10)
/connection_edge/zone/var/zone/B
/connection_edge/zone/var/direct = 0
/connection_edge/zone/New(zone/A, zone/B)
src.A = A
src.B = B
A.edges.Add(src)
B.edges.Add(src)
//id = edge_id(A,B)
//world << "New edge between [A] and [B]"
/connection_edge/zone/add_connection(connection/c)
. = ..()
connecting_turfs.Add(c.A)
if(c.direct()) direct++
/connection_edge/zone/remove_connection(connection/c)
connecting_turfs.Remove(c.A)
if(c.direct()) direct--
. = ..()
/connection_edge/zone/contains_zone(zone/Z)
return A == Z || B == Z
/connection_edge/zone/erase()
A.edges.Remove(src)
B.edges.Remove(src)
. = ..()
/connection_edge/zone/tick()
//world << "[id]: Tick [air_master.current_cycle]: \..."
if(direct)
if(air_master.equivalent_pressure(A, B))
//world << "merged."
erase()
air_master.merge(A, B)
//world << "zones merged."
return
//air_master.equalize(A, B)
ShareRatio(A.air,B.air,coefficient)
air_master.mark_zone_update(A)
air_master.mark_zone_update(B)
//world << "equalized."
var/differential = A.air.return_pressure() - B.air.return_pressure()
if(abs(differential) < vsc.airflow_lightest_pressure) return
var/list/attracted
var/list/repelled
if(differential > 0)
attracted = A.movables()
repelled = B.movables()
else
attracted = B.movables()
repelled = A.movables()
flow(attracted, abs(differential), 0)
flow(repelled, abs(differential), 1)
/connection_edge/unsimulated/var/turf/B
/connection_edge/unsimulated/var/datum/gas_mixture/air
/connection_edge/unsimulated/New(zone/A, turf/B)
src.A = A
src.B = B
A.edges.Add(src)
air = B.return_air()
//id = 52*A.id
//world << "New edge from [A.id] to [B]."
/connection_edge/unsimulated/add_connection(connection/c)
. = ..()
connecting_turfs.Add(c.B)
/connection_edge/unsimulated/remove_connection(connection/c)
connecting_turfs.Remove(c.B)
. = ..()
/connection_edge/unsimulated/contains_zone(zone/Z)
return A == Z
/connection_edge/unsimulated/tick()
//world << "[id]: Tick [air_master.current_cycle]: To [B]!"
//A.air.mimic(B, coefficient)
ShareSpace(A.air,air)
air_master.mark_zone_update(A)
var/differential = A.air.return_pressure() - air.return_pressure()
if(abs(differential) < vsc.airflow_lightest_pressure) return
var/list/attracted = A.movables()
flow(attracted, abs(differential), differential < 0)
var/list/sharing_lookup_table = list(0.30, 0.40, 0.48, 0.54, 0.60, 0.66)
proc/ShareRatio(datum/gas_mixture/A, datum/gas_mixture/B, connecting_tiles)
//Shares a specific ratio of gas between mixtures using simple weighted averages.
var
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
ratio = sharing_lookup_table[6]
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
size = max(1,A.group_multiplier)
share_size = max(1,B.group_multiplier)
full_oxy = A.oxygen * size
full_nitro = A.nitrogen * size
full_co2 = A.carbon_dioxide * size
full_plasma = A.toxins * size
full_heat_capacity = A.heat_capacity() * size
s_full_oxy = B.oxygen * share_size
s_full_nitro = B.nitrogen * share_size
s_full_co2 = B.carbon_dioxide * share_size
s_full_plasma = B.toxins * share_size
s_full_heat_capacity = B.heat_capacity() * share_size
oxy_avg = (full_oxy + s_full_oxy) / (size + share_size)
nit_avg = (full_nitro + s_full_nitro) / (size + share_size)
co2_avg = (full_co2 + s_full_co2) / (size + share_size)
plasma_avg = (full_plasma + s_full_plasma) / (size + share_size)
temp_avg = (A.temperature * full_heat_capacity + B.temperature * s_full_heat_capacity) / (full_heat_capacity + s_full_heat_capacity)
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
if(sharing_lookup_table.len >= connecting_tiles) //6 or more interconnecting tiles will max at 42% of air moved per tick.
ratio = sharing_lookup_table[connecting_tiles]
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1-ratio) + nit_avg )
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
A.toxins = max(0, (A.toxins - plasma_avg) * (1-ratio) + plasma_avg )
A.temperature = max(0, (A.temperature - temp_avg) * (1-ratio) + temp_avg )
B.oxygen = max(0, (B.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
B.nitrogen = max(0, (B.nitrogen - nit_avg) * (1-ratio) + nit_avg )
B.carbon_dioxide = max(0, (B.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
B.toxins = max(0, (B.toxins - plasma_avg) * (1-ratio) + plasma_avg )
B.temperature = max(0, (B.temperature - temp_avg) * (1-ratio) + temp_avg )
for(var/datum/gas/G in A.trace_gases)
var/datum/gas/H = locate(G.type) in B.trace_gases
if(H)
var/G_avg = (G.moles*size + H.moles*share_size) / (size+share_size)
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
else
H = new G.type
B.trace_gases += H
var/G_avg = (G.moles*size) / (size+share_size)
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
for(var/datum/gas/G in B.trace_gases)
var/datum/gas/H = locate(G.type) in A.trace_gases
if(!H)
H = new G.type
A.trace_gases += H
var/G_avg = (G.moles*size) / (size+share_size)
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
A.update_values()
B.update_values()
if(A.compare(B)) return 1
else return 0
proc/ShareSpace(datum/gas_mixture/A, list/unsimulated_tiles, dbg_output)
//A modified version of ShareRatio for spacing gas at the same rate as if it were going into a large airless room.
if(!unsimulated_tiles)
return 0
var
unsim_oxygen = 0
unsim_nitrogen = 0
unsim_co2 = 0
unsim_plasma = 0
unsim_heat_capacity = 0
unsim_temperature = 0
size = max(1,A.group_multiplier)
var/tileslen
var/share_size
if(istype(unsimulated_tiles, /datum/gas_mixture))
var/datum/gas_mixture/avg_unsim = unsimulated_tiles
unsim_oxygen = avg_unsim.oxygen
unsim_co2 = avg_unsim.carbon_dioxide
unsim_nitrogen = avg_unsim.nitrogen
unsim_plasma = avg_unsim.toxins
unsim_temperature = avg_unsim.temperature
share_size = max(1, max(size + 3, 1) + avg_unsim.group_multiplier)
tileslen = avg_unsim.group_multiplier
else if(istype(unsimulated_tiles, /list))
if(!unsimulated_tiles.len)
return 0
// We use the same size for the potentially single space tile
// as we use for the entire room. Why is this?
// Short answer: We do not want larger rooms to depressurize more
// slowly than small rooms, preserving our good old "hollywood-style"
// oh-shit effect when large rooms get breached, but still having small
// rooms remain pressurized for long enough to make escape possible.
share_size = max(1, max(size + 3, 1) + unsimulated_tiles.len)
var/correction_ratio = share_size / unsimulated_tiles.len
for(var/turf/T in unsimulated_tiles)
unsim_oxygen += T.oxygen
unsim_co2 += T.carbon_dioxide
unsim_nitrogen += T.nitrogen
unsim_plasma += T.toxins
unsim_temperature += T.temperature/unsimulated_tiles.len
//These values require adjustment in order to properly represent a room of the specified size.
unsim_oxygen *= correction_ratio
unsim_co2 *= correction_ratio
unsim_nitrogen *= correction_ratio
unsim_plasma *= correction_ratio
tileslen = unsimulated_tiles.len
else //invalid input type
return 0
unsim_heat_capacity = HEAT_CAPACITY_CALCULATION(unsim_oxygen, unsim_co2, unsim_nitrogen, unsim_plasma)
var
ratio = sharing_lookup_table[6]
old_pressure = A.return_pressure()
full_oxy = A.oxygen * size
full_nitro = A.nitrogen * size
full_co2 = A.carbon_dioxide * size
full_plasma = A.toxins * size
full_heat_capacity = A.heat_capacity() * size
oxy_avg = (full_oxy + unsim_oxygen) / (size + share_size)
nit_avg = (full_nitro + unsim_nitrogen) / (size + share_size)
co2_avg = (full_co2 + unsim_co2) / (size + share_size)
plasma_avg = (full_plasma + unsim_plasma) / (size + share_size)
temp_avg = 0
if((full_heat_capacity + unsim_heat_capacity) > 0)
temp_avg = (A.temperature * full_heat_capacity + unsim_temperature * unsim_heat_capacity) / (full_heat_capacity + unsim_heat_capacity)
if(sharing_lookup_table.len >= tileslen) //6 or more interconnecting tiles will max at 42% of air moved per tick.
ratio = sharing_lookup_table[tileslen]
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1 - ratio) + oxy_avg )
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1 - ratio) + nit_avg )
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1 - ratio) + co2_avg )
A.toxins = max(0, (A.toxins - plasma_avg) * (1 - ratio) + plasma_avg )
A.temperature = max(TCMB, (A.temperature - temp_avg) * (1 - ratio) + temp_avg )
for(var/datum/gas/G in A.trace_gases)
var/G_avg = (G.moles * size) / (size + share_size)
G.moles = (G.moles - G_avg) * (1 - ratio) + G_avg
A.update_values()
return abs(old_pressure - A.return_pressure())
proc/ShareHeat(datum/gas_mixture/A, datum/gas_mixture/B, connecting_tiles)
//This implements a simplistic version of the Stefan-Boltzmann law.
var/energy_delta = ((A.temperature - B.temperature) ** 4) * 5.6704e-8 * connecting_tiles * 2.5
var/maximum_energy_delta = max(0, min(A.temperature * A.heat_capacity() * A.group_multiplier, B.temperature * B.heat_capacity() * B.group_multiplier))
if(maximum_energy_delta > abs(energy_delta))
if(energy_delta < 0)
maximum_energy_delta *= -1
energy_delta = maximum_energy_delta
A.temperature -= energy_delta / (A.heat_capacity() * A.group_multiplier)
B.temperature += energy_delta / (B.heat_capacity() * B.group_multiplier)