Update math.dm

This commit is contained in:
AnalWerewolf
2020-06-17 08:48:37 +10:00
parent c6a8571d2f
commit 377bcf62a1

View File

@@ -1,221 +1,20 @@
// Credits to Nickr5 for the useful procs I've taken from his library resource.
// This file is quadruple wrapped for your pleasure
// (
#define NUM_E 2.71828183
#define M_PI (3.14159265)
#define INFINITY (1.#INF) //closer then enough
#define SHORT_REAL_LIMIT 16777216
//"fancy" math for calculating time in ms from tick_usage percentage and the length of ticks
//percent_of_tick_used * (ticklag * 100(to convert to ms)) / 100(percent ratio)
//collapsed to percent_of_tick_used * tick_lag
#define TICK_DELTA_TO_MS(percent_of_tick_used) ((percent_of_tick_used) * world.tick_lag)
#define TICK_USAGE_TO_MS(starting_tickusage) (TICK_DELTA_TO_MS(world.tick_usage - starting_tickusage))
#define PERCENT(val) (round((val)*100, 0.1))
#define CLAMP01(x) (clamp(x, 0, 1))
#define TICK_USAGE_TO_MS(starting_tickusage) (TICK_DELTA_TO_MS(TICK_USAGE-starting_tickusage))
//time of day but automatically adjusts to the server going into the next day within the same round.
//for when you need a reliable time number that doesn't depend on byond time.
#define REALTIMEOFDAY (world.timeofday + (MIDNIGHT_ROLLOVER * MIDNIGHT_ROLLOVER_CHECK))
#define MIDNIGHT_ROLLOVER_CHECK ( rollovercheck_last_timeofday != world.timeofday ? update_midnight_rollover() : midnight_rollovers )
#define SIGN(x) ( (x)!=0 ? (x) / abs(x) : 0 )
#define SHORT_REAL_LIMIT 16777216 // 2^24 - Maximum integer that can be exactly represented in a float (BYOND num var)
#define CEILING(x, y) ( -round(-(x) / (y)) * (y) )
// round() acts like floor(x, 1) by default but can't handle other values
#define FLOOR(x, y) ( round((x) / (y)) * (y) )
// Similar to clamp but the bottom rolls around to the top and vice versa. min is inclusive, max is exclusive
#define WRAP(val, min, max) ( min == max ? min : (val) - (round(((val) - (min))/((max) - (min))) * ((max) - (min))) )
// Real modulus that handles decimals
#define MODULUS(x, y) ( (x) - (y) * round((x) / (y)) )
// Cotangent
#define COT(x) (1 / tan(x))
// Secant
#define SEC(x) (1 / cos(x))
// Cosecant
#define CSC(x) (1 / sin(x))
// Greatest Common Divisor - Euclid's algorithm
/proc/GCD(a, b)
return b ? GCD(b, (a) % (b)) : a
// Least Common Multiple
#define LCM(a, b) (abs(a) / GCD(a, b) * abs(b))
// Used for restricting values to within a certain range. Ported from TGMC for compatibility, might prove useful elsewhere.
#define CLAMP(CLVALUE,CLMIN,CLMAX) ( max( (CLMIN), min((CLVALUE), (CLMAX)) ) )
// Check if a BYOND dir var is a cardinal direction (power of two)
#define IS_CARDINAL(x) ((x & (x - 1)) == 0)
#define INVERSE(x) ( 1/(x) )
// Used for calculating the radioactive strength falloff
#define INVERSE_SQUARE(initial_strength,cur_distance,initial_distance) ( (initial_strength)*((initial_distance)**2/(cur_distance)**2) )
#define ISABOUTEQUAL(a, b, deviation) (deviation ? abs((a) - (b)) <= deviation : abs((a) - (b)) <= 0.1)
#define ISEVEN(x) (x % 2 == 0)
#define ISODD(x) (x % 2 != 0)
// Returns true if val is from min to max, inclusive.
#define ISINRANGE(val, min, max) (min <= val && val <= max)
// Same as above, exclusive.
#define ISINRANGE_EX(val, min, max) (min < val && val > max)
#define ISINTEGER(x) (round(x) == x)
#define ISMULTIPLE(x, y) ((x) % (y) == 0)
// Performs a linear interpolation between a and b.
// Note that amount=0 returns a, amount=1 returns b, and
// amount=0.5 returns the mean of a and b.
#define LERP(a, b, amount) ( amount ? ((a) + ((b) - (a)) * (amount)) : a )
// Returns the nth root of x.
#define ROOT(n, x) ((x) ** (1 / (n)))
/proc/Mean(...)
var/sum = 0
for(var/val in args)
sum += val
return sum / args.len
// The quadratic formula. Returns a list with the solutions, or an empty list
// if they are imaginary.
/proc/SolveQuadratic(a, b, c)
ASSERT(a)
. = list()
var/d = b*b - 4 * a * c
var/bottom = 2 * a
// Return if the roots are imaginary.
if(d < 0)
return
var/root = sqrt(d)
. += (-b + root) / bottom
// If discriminant == 0, there would be two roots at the same position.
if(!d)
return
. += (-b - root) / bottom
// 180 / Pi ~ 57.2957795
#define TODEGREES(radians) ((radians) * 57.2957795)
// Pi / 180 ~ 0.0174532925
#define TORADIANS(degrees) ((degrees) * 0.0174532925)
// Will filter out extra rotations and negative rotations
// E.g: 540 becomes 180. -180 becomes 180.
#define SIMPLIFY_DEGREES(degrees) (MODULUS((degrees), 360))
#define GET_ANGLE_OF_INCIDENCE(face, input) (MODULUS((face) - (input), 360))
//Finds the shortest angle that angle A has to change to get to angle B. Aka, whether to move clock or counterclockwise.
/proc/closer_angle_difference(a, b)
if(!isnum(a) || !isnum(b))
return
a = SIMPLIFY_DEGREES(a)
b = SIMPLIFY_DEGREES(b)
var/inc = b - a
if(inc < 0)
inc += 360
var/dec = a - b
if(dec < 0)
dec += 360
. = inc > dec? -dec : inc
//A logarithm that converts an integer to a number scaled between 0 and 1.
//Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions.
#define TRANSFORM_USING_VARIABLE(input, max) ( sin((90*(input))/(max))**2 )
//converts a uniform distributed random number into a normal distributed one
//since this method produces two random numbers, one is saved for subsequent calls
//(making the cost negligble for every second call)
//This will return +/- decimals, situated about mean with standard deviation stddev
//68% chance that the number is within 1stddev
//95% chance that the number is within 2stddev
//98% chance that the number is within 3stddev...etc
#define ACCURACY 10000
/proc/gaussian(mean, stddev)
var/static/gaussian_next
var/R1;var/R2;var/working
if(gaussian_next != null)
R1 = gaussian_next
gaussian_next = null
else
do
R1 = rand(-ACCURACY,ACCURACY)/ACCURACY
R2 = rand(-ACCURACY,ACCURACY)/ACCURACY
working = R1*R1 + R2*R2
while(working >= 1 || working==0)
working = sqrt(-2 * log(working) / working)
R1 *= working
gaussian_next = R2 * working
return (mean + stddev * R1)
#undef ACCURACY
/proc/get_turf_in_angle(angle, turf/starting, increments)
var/pixel_x = 0
var/pixel_y = 0
for(var/i in 1 to increments)
pixel_x += sin(angle)+16*sin(angle)*2
pixel_y += cos(angle)+16*cos(angle)*2
var/new_x = starting.x
var/new_y = starting.y
while(pixel_x > 16)
pixel_x -= 32
new_x++
while(pixel_x < -16)
pixel_x += 32
new_x--
while(pixel_y > 16)
pixel_y -= 32
new_y++
while(pixel_y < -16)
pixel_y += 32
new_y--
new_x = clamp(new_x, 0, world.maxx)
new_y = clamp(new_y, 0, world.maxy)
return locate(new_x, new_y, starting.z)
// Returns a list where [1] is all x values and [2] is all y values that overlap between the given pair of rectangles
/proc/get_overlap(x1, y1, x2, y2, x3, y3, x4, y4)
var/list/region_x1 = list()
var/list/region_y1 = list()
var/list/region_x2 = list()
var/list/region_y2 = list()
// These loops create loops filled with x/y values that the boundaries inhabit
// ex: list(5, 6, 7, 8, 9)
for(var/i in min(x1, x2) to max(x1, x2))
region_x1["[i]"] = TRUE
for(var/i in min(y1, y2) to max(y1, y2))
region_y1["[i]"] = TRUE
for(var/i in min(x3, x4) to max(x3, x4))
region_x2["[i]"] = TRUE
for(var/i in min(y3, y4) to max(y3, y4))
region_y2["[i]"] = TRUE
return list(region_x1 & region_x2, region_y1 & region_y2)
// )
#define RAND_F(LOW, HIGH) (rand()*(HIGH-LOW) + LOW)
#define SQUARE(x) (x*x)
//Vector Algebra
#define SQUAREDNORM(x, y) (x*x+y*y)
#define NORM(x, y) (sqrt(SQUAREDNORM(x,y)))
#define ISPOWEROFTWO(x) ((x & (x - 1)) == 0)
#define ROUNDUPTOPOWEROFTWO(x) (2 ** -round(-log(2,x)))
#define DEFAULT(a, b) (a? a : b)