mirror of
https://github.com/Citadel-Station-13/Citadel-Station-13-RP.git
synced 2025-12-09 18:03:55 +00:00
220 lines
6.9 KiB
Plaintext
220 lines
6.9 KiB
Plaintext
// Credits to Nickr5 for the useful procs I've taken from his library resource.
|
|
// This file is quadruple wrapped for your pleasure
|
|
// (
|
|
|
|
#define NUM_E 2.71828183
|
|
|
|
#define SQRT_2 1.414214
|
|
|
|
#define M_PI (3.14159265)
|
|
///closer then enough
|
|
#define INFINITY (1.#INF)
|
|
#define SHORT_REAL_LIMIT 16777216
|
|
|
|
//"fancy" math for calculating time in ms from tick_usage percentage and the length of ticks
|
|
//percent_of_tick_used * (ticklag * 100(to convert to ms)) / 100(percent ratio)
|
|
//collapsed to percent_of_tick_used * tick_lag
|
|
#define TICK_DELTA_TO_MS(percent_of_tick_used) ((percent_of_tick_used) * world.tick_lag)
|
|
#define TICK_USAGE_TO_MS(starting_tickusage) (TICK_DELTA_TO_MS(world.tick_usage - starting_tickusage))
|
|
|
|
#define PERCENT(val) (round((val)*100, 0.1))
|
|
#define CLAMP01(x) (clamp(x, 0, 1))
|
|
|
|
//time of day but automatically adjusts to the server going into the next day within the same round.
|
|
//for when you need a reliable time number that doesn't depend on byond time.
|
|
#define REALTIMEOFDAY (world.timeofday + (MIDNIGHT_ROLLOVER * MIDNIGHT_ROLLOVER_CHECK))
|
|
#define MIDNIGHT_ROLLOVER_CHECK ( rollovercheck_last_timeofday != world.timeofday ? update_midnight_rollover() : midnight_rollovers )
|
|
|
|
#define SIGN(x) ( (x)!=0 ? (x) / abs(x) : 0 )
|
|
|
|
#define CEILING(x, y) ( -round(-(x) / (y)) * (y) )
|
|
|
|
// round() acts like floor(x, 1) by default but can't handle other values
|
|
#define FLOOR(x, y) ( round((x) / (y)) * (y) )
|
|
|
|
// Similar to clamp but the bottom rolls around to the top and vice versa. min is inclusive, max is exclusive
|
|
#define WRAP(val, min, max) ( min == max ? min : (val) - (round(((val) - (min))/((max) - (min))) * ((max) - (min))) )
|
|
|
|
// Real modulus that handles decimals
|
|
#define MODULUS(x, y) ( (x) - (y) * round((x) / (y)) )
|
|
|
|
// Cotangent
|
|
#define COT(x) (1 / tan(x))
|
|
|
|
// Secant
|
|
#define SEC(x) (1 / cos(x))
|
|
|
|
// Cosecant
|
|
#define CSC(x) (1 / sin(x))
|
|
|
|
// Greatest Common Divisor - Euclid's algorithm
|
|
/proc/GCD(a, b)
|
|
return b ? GCD(b, (a) % (b)) : a
|
|
|
|
// Least Common Multiple
|
|
#define LCM(a, b) (abs(a) / GCD(a, b) * abs(b))
|
|
|
|
#define INVERSE(x) ( 1/(x) )
|
|
|
|
// Used for calculating the radioactive strength falloff
|
|
#define INVERSE_SQUARE(initial_strength,cur_distance,initial_distance) ( (initial_strength)*((initial_distance)**2/(cur_distance)**2) )
|
|
|
|
#define ISABOUTEQUAL(a, b, deviation) (deviation ? abs((a) - (b)) <= deviation : abs((a) - (b)) <= 0.1)
|
|
|
|
#define ISEVEN(x) (x % 2 == 0)
|
|
|
|
#define ISODD(x) (x % 2 != 0)
|
|
|
|
// Returns true if val is from min to max, inclusive.
|
|
#define ISINRANGE(val, min, max) (min <= val && val <= max)
|
|
|
|
// Same as above, exclusive.
|
|
#define ISINRANGE_EX(val, min, max) (min < val && val > max)
|
|
|
|
#define ISINTEGER(x) (round(x) == x)
|
|
|
|
#define ISMULTIPLE(x, y) ((x) % (y) == 0)
|
|
|
|
// Performs a linear interpolation between a and b.
|
|
// Note that amount=0 returns a, amount=1 returns b, and
|
|
// amount=0.5 returns the mean of a and b.
|
|
#define LERP(a, b, amount) ( amount ? ((a) + ((b) - (a)) * (amount)) : a )
|
|
|
|
// Returns the nth root of x.
|
|
#define ROOT(n, x) ((x) ** (1 / (n)))
|
|
|
|
/proc/Mean(...)
|
|
var/sum = 0
|
|
for(var/val in args)
|
|
sum += val
|
|
return sum / args.len
|
|
|
|
// The quadratic formula. Returns a list with the solutions, or an empty list
|
|
// if they are imaginary.
|
|
/proc/SolveQuadratic(a, b, c)
|
|
ASSERT(a)
|
|
. = list()
|
|
var/d = b*b - 4 * a * c
|
|
var/bottom = 2 * a
|
|
// Return if the roots are imaginary.
|
|
if(d < 0)
|
|
return
|
|
var/root = sqrt(d)
|
|
. += (-b + root) / bottom
|
|
// If discriminant == 0, there would be two roots at the same position.
|
|
if(!d)
|
|
return
|
|
. += (-b - root) / bottom
|
|
|
|
// 180 / Pi ~ 57.2957795
|
|
#define TODEGREES(radians) ((radians) * 57.2957795)
|
|
|
|
// Pi / 180 ~ 0.0174532925
|
|
#define TORADIANS(degrees) ((degrees) * 0.0174532925)
|
|
|
|
// Will filter out extra rotations and negative rotations
|
|
// E.g: 540 becomes 180. -180 becomes 180.
|
|
#define SIMPLIFY_DEGREES(degrees) (MODULUS((degrees), 360))
|
|
|
|
#define GET_ANGLE_OF_INCIDENCE(face, input) (MODULUS((face) - (input), 360))
|
|
|
|
//Finds the shortest angle that angle A has to change to get to angle B. Aka, whether to move clock or counterclockwise.
|
|
/proc/closer_angle_difference(a, b)
|
|
if(!isnum(a) || !isnum(b))
|
|
return
|
|
a = SIMPLIFY_DEGREES(a)
|
|
b = SIMPLIFY_DEGREES(b)
|
|
var/inc = b - a
|
|
if(inc < 0)
|
|
inc += 360
|
|
var/dec = a - b
|
|
if(dec < 0)
|
|
dec += 360
|
|
. = inc > dec? -dec : inc
|
|
|
|
//A logarithm that converts an integer to a number scaled between 0 and 1.
|
|
//Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions.
|
|
#define TRANSFORM_USING_VARIABLE(input, max) ( sin((90*(input))/(max))**2 )
|
|
|
|
//converts a uniform distributed random number into a normal distributed one
|
|
//since this method produces two random numbers, one is saved for subsequent calls
|
|
//(making the cost negligble for every second call)
|
|
//This will return +/- decimals, situated about mean with standard deviation stddev
|
|
//68% chance that the number is within 1stddev
|
|
//95% chance that the number is within 2stddev
|
|
//98% chance that the number is within 3stddev...etc
|
|
#define ACCURACY 10000
|
|
/proc/gaussian(mean, stddev)
|
|
var/static/gaussian_next
|
|
var/R1;var/R2;var/working
|
|
if(gaussian_next != null)
|
|
R1 = gaussian_next
|
|
gaussian_next = null
|
|
else
|
|
do
|
|
R1 = rand(-ACCURACY,ACCURACY)/ACCURACY
|
|
R2 = rand(-ACCURACY,ACCURACY)/ACCURACY
|
|
working = R1*R1 + R2*R2
|
|
while(working >= 1 || working==0)
|
|
working = sqrt(-2 * log(working) / working)
|
|
R1 *= working
|
|
gaussian_next = R2 * working
|
|
return (mean + stddev * R1)
|
|
#undef ACCURACY
|
|
|
|
/proc/get_turf_in_angle(angle, turf/starting, increments)
|
|
var/pixel_x = 0
|
|
var/pixel_y = 0
|
|
for(var/i in 1 to increments)
|
|
pixel_x += sin(angle)+16*sin(angle)*2
|
|
pixel_y += cos(angle)+16*cos(angle)*2
|
|
var/new_x = starting.x
|
|
var/new_y = starting.y
|
|
while(pixel_x > 16)
|
|
pixel_x -= 32
|
|
new_x++
|
|
while(pixel_x < -16)
|
|
pixel_x += 32
|
|
new_x--
|
|
while(pixel_y > 16)
|
|
pixel_y -= 32
|
|
new_y++
|
|
while(pixel_y < -16)
|
|
pixel_y += 32
|
|
new_y--
|
|
new_x = clamp(new_x, 0, world.maxx)
|
|
new_y = clamp(new_y, 0, world.maxy)
|
|
return locate(new_x, new_y, starting.z)
|
|
|
|
// Returns a list where [1] is all x values and [2] is all y values that overlap between the given pair of rectangles
|
|
/proc/get_overlap(x1, y1, x2, y2, x3, y3, x4, y4)
|
|
var/list/region_x1 = list()
|
|
var/list/region_y1 = list()
|
|
var/list/region_x2 = list()
|
|
var/list/region_y2 = list()
|
|
|
|
// These loops create loops filled with x/y values that the boundaries inhabit
|
|
// ex: list(5, 6, 7, 8, 9)
|
|
for(var/i in min(x1, x2) to max(x1, x2))
|
|
region_x1["[i]"] = TRUE
|
|
for(var/i in min(y1, y2) to max(y1, y2))
|
|
region_y1["[i]"] = TRUE
|
|
for(var/i in min(x3, x4) to max(x3, x4))
|
|
region_x2["[i]"] = TRUE
|
|
for(var/i in min(y3, y4) to max(y3, y4))
|
|
region_y2["[i]"] = TRUE
|
|
|
|
return list(region_x1 & region_x2, region_y1 & region_y2)
|
|
|
|
// )
|
|
|
|
#define RAND_F(LOW, HIGH) (rand()*(HIGH-LOW) + LOW)
|
|
|
|
#define SQUARE(x) (x*x)
|
|
|
|
//Vector Algebra
|
|
#define SQUAREDNORM(x, y) (x*x+y*y)
|
|
#define NORM(x, y) (sqrt(SQUAREDNORM(x,y)))
|
|
#define ISPOWEROFTWO(x) ((x & (x - 1)) == 0)
|
|
#define ROUNDUPTOPOWEROFTWO(x) (2 ** -round(-log(2,x)))
|