/* * Holds procs to help with list operations * Contains groups: * Misc * Sorting */ /* * Misc */ // binary search sorted insert // IN: Object to be inserted // LIST: List to insert object into // TYPECONT: The typepath of the contents of the list // COMPARE: The variable on the objects to compare #define BINARY_INSERT(IN, LIST, TYPECONT, COMPARE) \ var/__BIN_CTTL = length(LIST);\ if(!__BIN_CTTL) {\ LIST += IN;\ } else {\ var/__BIN_LEFT = 1;\ var/__BIN_RIGHT = __BIN_CTTL;\ var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ var/##TYPECONT/__BIN_ITEM;\ while(__BIN_LEFT < __BIN_RIGHT) {\ __BIN_ITEM = LIST[__BIN_MID];\ if(__BIN_ITEM.##COMPARE <= IN.##COMPARE) {\ __BIN_LEFT = __BIN_MID + 1;\ } else {\ __BIN_RIGHT = __BIN_MID;\ };\ __BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ };\ __BIN_ITEM = LIST[__BIN_MID];\ __BIN_MID = __BIN_ITEM.##COMPARE > IN.##COMPARE ? __BIN_MID : __BIN_MID + 1;\ LIST.Insert(__BIN_MID, IN);\ } //Returns a list in plain english as a string /proc/english_list(var/list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" ) var/total = input.len if(!total) return "[nothing_text]" else if(total == 1) return "[input[1]]" else if(total == 2) return "[input[1]][and_text][input[2]]" else var/output = "" var/index = 1 while(index < total) if(index == total - 1) comma_text = final_comma_text output += "[input[index]][comma_text]" index++ return "[output][and_text][input[index]]" //Returns list element or null. Should prevent "index out of bounds" error. /proc/listgetindex(var/list/list,index) if(istype(list) && list.len) if(isnum(index)) if(InRange(index,1,list.len)) return list[index] else if(index in list) return list[index] return //Return either pick(list) or null if list is not of type /list or is empty /proc/safepick(list/list) if(!islist(list) || !list.len) return return pick(list) //Checks if the list is empty /proc/isemptylist(list/list) if(!list.len) return 1 return 0 //Checks for specific types in a list /proc/is_type_in_list(atom/A, list/L) if(!L || !L.len || !A) return 0 for(var/type in L) if(istype(A, type)) return 1 return 0 //Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches') /proc/is_type_in_typecache(atom/A, list/L) if(!L || !L.len || !A) return 0 return L[A.type] //returns a new list with only atoms that are in typecache L /proc/typecache_filter_list(list/atoms, list/typecache) . = list() for(var/thing in atoms) var/atom/A = thing if(typecache[A.type]) . += A /proc/typecache_filter_list_reverse(list/atoms, list/typecache) . = list() for(var/thing in atoms) var/atom/A = thing if(!typecache[A.type]) . += A /proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude) . = list() for(var/thing in atoms) var/atom/A = thing if(typecache_include[A.type] && !typecache_exclude[A.type]) . += A //Like typesof() or subtypesof(), but returns a typecache instead of a list /proc/typecacheof(path, ignore_root_path, only_root_path = FALSE) if(ispath(path)) var/list/types = list() if(only_root_path) types = list(path) else types = ignore_root_path ? subtypesof(path) : typesof(path) var/list/L = list() for(var/T in types) L[T] = TRUE return L else if(islist(path)) var/list/pathlist = path var/list/L = list() if(ignore_root_path) for(var/P in pathlist) for(var/T in subtypesof(P)) L[T] = TRUE else for(var/P in pathlist) if(only_root_path) L[P] = TRUE else for(var/T in typesof(P)) L[T] = TRUE return L //Removes any null entries from the list /proc/listclearnulls(list/list) if(istype(list)) while(null in list) list -= null return /* * Returns list containing all the entries from first list that are not present in second. * If skiprep = 1, repeated elements are treated as one. * If either of arguments is not a list, returns null */ /proc/difflist(var/list/first, var/list/second, var/skiprep=0) if(!islist(first) || !islist(second)) return var/list/result = new if(skiprep) for(var/e in first) if(!(e in result) && !(e in second)) result += e else result = first - second return result /* * Returns list containing entries that are in either list but not both. * If skipref = 1, repeated elements are treated as one. * If either of arguments is not a list, returns null */ /proc/uniquemergelist(var/list/first, var/list/second, var/skiprep=0) if(!islist(first) || !islist(second)) return var/list/result = new if(skiprep) result = difflist(first, second, skiprep)+difflist(second, first, skiprep) else result = first ^ second return result //Pretends to pick an element based on its weight but really just seems to pick a random element. /proc/pickweight(list/L) var/total = 0 var/item for(item in L) if(!L[item]) L[item] = 1 total += L[item] total = rand(1, total) for(item in L) total -=L [item] if(total <= 0) return item return null //Pick a random element from the list and remove it from the list. /proc/pick_n_take(list/listfrom) if(listfrom.len > 0) var/picked = pick(listfrom) listfrom -= picked return picked return null //Returns the top(last) element from the list and removes it from the list (typical stack function) /proc/pop(list/L) if(L.len) . = L[L.len] L.len-- /proc/popleft(list/L) if(L.len) . = L[1] L.Cut(1,2) /* * Sorting */ //Reverses the order of items in the list /proc/reverselist(list/L) var/list/output = list() if(L) for(var/i = L.len; i >= 1; i--) output += L[i] return output //Randomize: Return the list in a random order /proc/shuffle(var/list/L) if(!L) return L = L.Copy() for(var/i=1, i current_index) current_index++ current_item = sorted_list[current_index] current_item_value = current_item:dd_SortValue() current_sort_object_value = current_sort_object:dd_SortValue() if(current_sort_object_value < current_item_value) high_index = current_index - 1 else if(current_sort_object_value > current_item_value) low_index = current_index + 1 else // current_sort_object == current_item low_index = current_index break // Insert before low_index. insert_index = low_index // Special case adding to end of list. if(insert_index > sorted_list.len) sorted_list += current_sort_object continue // Because BYOND lists don't support insert, have to do it by: // 1) taking out bottom of list, 2) adding item, 3) putting back bottom of list. list_bottom = sorted_list.Copy(insert_index) sorted_list.Cut(insert_index) sorted_list += current_sort_object sorted_list += list_bottom return sorted_list */ /proc/dd_sortedtextlist(list/incoming, case_sensitive = 0) // Returns a new list with the text values sorted. // Use binary search to order by sortValue. // This works by going to the half-point of the list, seeing if the node in question is higher or lower cost, // then going halfway up or down the list and checking again. // This is a very fast way to sort an item into a list. var/list/sorted_text = new() var/low_index var/high_index var/insert_index var/midway_calc var/current_index var/current_item var/list/list_bottom var/sort_result var/current_sort_text for(current_sort_text in incoming) low_index = 1 high_index = sorted_text.len while(low_index <= high_index) // Figure out the midpoint, rounding up for fractions. (BYOND rounds down, so add 1 if necessary.) midway_calc = (low_index + high_index) / 2 current_index = round(midway_calc) if(midway_calc > current_index) current_index++ current_item = sorted_text[current_index] if(case_sensitive) sort_result = sorttextEx(current_sort_text, current_item) else sort_result = sorttext(current_sort_text, current_item) switch(sort_result) if(1) high_index = current_index - 1 // current_sort_text < current_item if(-1) low_index = current_index + 1 // current_sort_text > current_item if(0) low_index = current_index // current_sort_text == current_item break // Insert before low_index. insert_index = low_index // Special case adding to end of list. if(insert_index > sorted_text.len) sorted_text += current_sort_text continue // Because BYOND lists don't support insert, have to do it by: // 1) taking out bottom of list, 2) adding item, 3) putting back bottom of list. list_bottom = sorted_text.Copy(insert_index) sorted_text.Cut(insert_index) sorted_text += current_sort_text sorted_text += list_bottom return sorted_text /proc/dd_sortedTextList(list/incoming) var/case_sensitive = 1 return dd_sortedtextlist(incoming, case_sensitive) /proc/subtypesof(var/path) //Returns a list containing all subtypes of the given path, but not the given path itself. if(!path || !ispath(path)) CRASH("Invalid path, failed to fetch subtypes of \"[path]\".") return (typesof(path) - path) /datum/proc/dd_SortValue() return "[src]" /obj/machinery/dd_SortValue() return "[sanitize(name)]" /obj/machinery/camera/dd_SortValue() return "[c_tag]" /datum/alarm/dd_SortValue() return "[sanitize(last_name)]" //Picks from the list, with some safeties, and returns the "default" arg if it fails #define DEFAULTPICK(L, default) ((istype(L, /list) && L:len) ? pick(L) : default) #define LAZYINITLIST(L) if (!L) L = list() #define UNSETEMPTY(L) if (L && !L.len) L = null #define LAZYREMOVE(L, I) if(L) { L -= I; if(!L.len) { L = null; } } #define LAZYADD(L, I) if(!L) { L = list(); } L += I; #define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= L.len ? L[I] : null) : L[I]) : null) #define LAZYLEN(L) length(L) #define LAZYCLEARLIST(L) if(L) L.Cut() // LAZYING PT 2: THE LAZENING #define LAZYREINITLIST(L) LAZYCLEARLIST(L); LAZYINITLIST(L); // Lazying Episode 3 #define LAZYSET(L, K, V) LAZYINITLIST(L); L[K] = V; //same, but returns nothing and acts on list in place /proc/shuffle_inplace(list/L) if(!L) return for(var/i=1, i toIndex) ++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one L.Insert(toIndex, null) L.Swap(fromIndex, toIndex) L.Cut(fromIndex, fromIndex + 1) //Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex) //Same as moveElement but for ranges of elements //This will preserve associations ~Carnie /proc/moveRange(list/L, fromIndex, toIndex, len = 1) var/distance = abs(toIndex - fromIndex) if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements if(fromIndex <= toIndex) return //no need to move fromIndex += len //we want to shift left instead of right for(var/i = 0, i < distance, ++i) L.Insert(fromIndex, null) L.Swap(fromIndex, toIndex) L.Cut(toIndex, toIndex + 1) else if(fromIndex > toIndex) fromIndex += len for(var/i = 0, i < len, ++i) L.Insert(toIndex, null) L.Swap(fromIndex, toIndex) L.Cut(fromIndex, fromIndex + 1) //Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len) //Move any elements being overwritten by the move to the now-empty elements, preserving order //Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie /proc/swapRange(list/L, fromIndex, toIndex, len = 1) var/distance = abs(toIndex - fromIndex) if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements if(fromIndex < toIndex) toIndex += len else fromIndex += len for(var/i = 0, i < distance, ++i) L.Insert(fromIndex, null) L.Swap(fromIndex, toIndex) L.Cut(toIndex, toIndex + 1) else if(toIndex > fromIndex) var/a = toIndex toIndex = fromIndex fromIndex = a for(var/i = 0, i < len, ++i) L.Swap(fromIndex++, toIndex++) //replaces reverseList ~Carnie /proc/reverseRange(list/L, start = 1, end = 0) if(L.len) start = start % L.len end = end % (L.len + 1) if(start <= 0) start += L.len if(end <= 0) end += L.len + 1 --end while(start < end) L.Swap(start++, end--) return L /proc/counterlist_scale(list/L, scalar) var/list/out = list() for(var/key in L) out[key] = L[key] * scalar . = out /proc/counterlist_sum(list/L) . = 0 for(var/key in L) . += L[key] /proc/counterlist_normalise(list/L) var/avg = counterlist_sum(L) if(avg != 0) . = counterlist_scale(L, 1 / avg) else . = L /proc/counterlist_combine(list/L1, list/L2) for(var/key in L2) var/other_value = L2[key] if(key in L1) L1[key] += other_value else L1[key] = other_value