mirror of
https://github.com/ParadiseSS13/Paradise.git
synced 2025-12-23 00:31:57 +00:00
123 lines
3.9 KiB
Plaintext
123 lines
3.9 KiB
Plaintext
// Credits to Nickr5 for the useful procs I've taken from his library resource.
|
|
|
|
var/const/E = 2.71828183
|
|
var/const/Sqrt2 = 1.41421356
|
|
|
|
/proc/Atan2(x, y)
|
|
if(!x && !y) return 0
|
|
var/a = arccos(x / sqrt(x*x + y*y))
|
|
return y >= 0 ? a : -a
|
|
|
|
// Greatest Common Divisor - Euclid's algorithm
|
|
/proc/Gcd(a, b)
|
|
return b ? Gcd(b, a % b) : a
|
|
|
|
/proc/IsAboutEqual(a, b, deviation = 0.1)
|
|
return abs(a - b) <= deviation
|
|
|
|
// Performs a linear interpolation between a and b.
|
|
// Note that amount=0 returns a, amount=1 returns b, and
|
|
// amount=0.5 returns the mean of a and b.
|
|
/proc/Lerp(a, b, amount = 0.5)
|
|
return a + (b - a) * amount
|
|
|
|
/proc/Mean(...)
|
|
var/values = 0
|
|
var/sum = 0
|
|
for(var/val in args)
|
|
values++
|
|
sum += val
|
|
return sum / values
|
|
|
|
// The quadratic formula. Returns a list with the solutions, or an empty list
|
|
// if they are imaginary.
|
|
/proc/SolveQuadratic(a, b, c)
|
|
ASSERT(a)
|
|
. = list()
|
|
var/d = b*b - 4 * a * c
|
|
var/bottom = 2 * a
|
|
if(d < 0) return
|
|
var/root = sqrt(d)
|
|
. += (-b + root) / bottom
|
|
if(!d) return
|
|
. += (-b - root) / bottom
|
|
|
|
// Will filter out extra rotations and negative rotations
|
|
// E.g: 540 becomes 180. -180 becomes 180.
|
|
/proc/SimplifyDegrees(degrees)
|
|
degrees = degrees % 360
|
|
if(degrees < 0)
|
|
degrees += 360
|
|
return degrees
|
|
|
|
// min is inclusive, max is exclusive
|
|
/proc/Wrap(val, min, max)
|
|
var/d = max - min
|
|
var/t = Floor((val - min) / d)
|
|
return val - (t * d)
|
|
|
|
//A logarithm that converts an integer to a number scaled between 0 and 1 (can be tweaked to be higher).
|
|
//Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions.
|
|
/proc/TransformUsingVariable(input, inputmaximum, scaling_modifier = 0)
|
|
|
|
var/inputToDegrees = (input/inputmaximum)*180 //Converting from a 0 -> 100 scale to a 0 -> 180 scale. The 0 -> 180 scale corresponds to degrees
|
|
var/size_factor = ((-cos(inputToDegrees) +1) /2) //returns a value from 0 to 1
|
|
|
|
return size_factor + scaling_modifier //scale mod of 0 results in a number from 0 to 1. A scale modifier of +0.5 returns 0.5 to 1.5
|
|
//world<< "Transform multiplier of [src] is [size_factor + scaling_modifer]"
|
|
|
|
/proc/RaiseToPower(num, power)
|
|
if(!power) return 1
|
|
return (power-- > 1 ? num * RaiseToPower(num, power) : num)
|
|
|
|
//converts a uniform distributed random number into a normal distributed one
|
|
//since this method produces two random numbers, one is saved for subsequent calls
|
|
//(making the cost negligble for every second call)
|
|
//This will return +/- decimals, situated about mean with standard deviation stddev
|
|
//68% chance that the number is within 1stddev
|
|
//95% chance that the number is within 2stddev
|
|
//98% chance that the number is within 3stddev...etc
|
|
var/gaussian_next
|
|
#define ACCURACY 10000
|
|
/proc/gaussian(mean, stddev)
|
|
var/R1;var/R2;var/working
|
|
if(gaussian_next != null)
|
|
R1 = gaussian_next
|
|
gaussian_next = null
|
|
else
|
|
do
|
|
R1 = rand(-ACCURACY,ACCURACY)/ACCURACY
|
|
R2 = rand(-ACCURACY,ACCURACY)/ACCURACY
|
|
working = R1*R1 + R2*R2
|
|
while(working >= 1 || working==0)
|
|
working = sqrt(-2 * log(working) / working)
|
|
R1 *= working
|
|
gaussian_next = R2 * working
|
|
return (mean + stddev * R1)
|
|
#undef ACCURACY
|
|
|
|
|
|
|
|
// oof, what a mouthful
|
|
// Used in status_procs' "adjust" to let them modify a status effect by a given
|
|
// amount, without inadverdently increasing it in the wrong direction
|
|
/proc/directional_bounded_sum(orig_val, modifier, bound_lower, bound_upper)
|
|
var/new_val = orig_val + modifier
|
|
if(modifier > 0)
|
|
if(new_val > bound_upper)
|
|
new_val = max(orig_val, bound_upper)
|
|
else if(modifier < 0)
|
|
if(new_val < bound_lower)
|
|
new_val = min(orig_val, bound_lower)
|
|
return new_val
|
|
|
|
// sqrt, but if you give it a negative number, you get 0 instead of a runtime
|
|
/proc/sqrtor0(num)
|
|
if(num < 0)
|
|
return 0
|
|
return sqrt(num)
|
|
|
|
/proc/round_down(num)
|
|
if(round(num) != num)
|
|
return round(num--)
|
|
else return num |