mirror of
https://github.com/ParadiseSS13/Paradise.git
synced 2025-12-20 07:12:55 +00:00
868 lines
23 KiB
Plaintext
868 lines
23 KiB
Plaintext
/*
|
|
* Holds procs to help with list operations
|
|
* Contains groups:
|
|
* Misc
|
|
* Sorting
|
|
*/
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
// binary search sorted insert
|
|
// IN: Object to be inserted
|
|
// LIST: List to insert object into
|
|
// TYPECONT: The typepath of the contents of the list
|
|
// COMPARE: The variable on the objects to compare
|
|
#define BINARY_INSERT(IN, LIST, TYPECONT, COMPARE) \
|
|
var/__BIN_CTTL = length(LIST);\
|
|
if(!__BIN_CTTL) {\
|
|
LIST += IN;\
|
|
} else {\
|
|
var/__BIN_LEFT = 1;\
|
|
var/__BIN_RIGHT = __BIN_CTTL;\
|
|
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
var/##TYPECONT/__BIN_ITEM;\
|
|
while(__BIN_LEFT < __BIN_RIGHT) {\
|
|
__BIN_ITEM = LIST[__BIN_MID];\
|
|
if(__BIN_ITEM.##COMPARE <= IN.##COMPARE) {\
|
|
__BIN_LEFT = __BIN_MID + 1;\
|
|
} else {\
|
|
__BIN_RIGHT = __BIN_MID;\
|
|
};\
|
|
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
};\
|
|
__BIN_ITEM = LIST[__BIN_MID];\
|
|
__BIN_MID = __BIN_ITEM.##COMPARE > IN.##COMPARE ? __BIN_MID : __BIN_MID + 1;\
|
|
LIST.Insert(__BIN_MID, IN);\
|
|
}
|
|
|
|
/// Passed into BINARY_INSERT to compare keys
|
|
#define COMPARE_KEY __BIN_LIST[__BIN_MID]
|
|
/// Passed into BINARY_INSERT to compare values
|
|
#define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]]
|
|
|
|
/****
|
|
* Binary search sorted insert from TG
|
|
* INPUT: Object to be inserted
|
|
* LIST: List to insert object into
|
|
* TYPECONT: The typepath of the contents of the list
|
|
* COMPARE: The object to compare against, usualy the same as INPUT
|
|
* COMPARISON: The variable on the objects to compare
|
|
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
|
|
*/
|
|
#define BINARY_INSERT_TG(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
|
|
do {\
|
|
var/list/__BIN_LIST = LIST;\
|
|
var/__BIN_CTTL = length(__BIN_LIST);\
|
|
if(!__BIN_CTTL) {\
|
|
__BIN_LIST += INPUT;\
|
|
} else {\
|
|
var/__BIN_LEFT = 1;\
|
|
var/__BIN_RIGHT = __BIN_CTTL;\
|
|
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
var ##TYPECONT/__BIN_ITEM;\
|
|
while(__BIN_LEFT < __BIN_RIGHT) {\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\
|
|
__BIN_LEFT = __BIN_MID + 1;\
|
|
} else {\
|
|
__BIN_RIGHT = __BIN_MID;\
|
|
};\
|
|
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
};\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
__BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\
|
|
__BIN_LIST.Insert(__BIN_MID, INPUT);\
|
|
};\
|
|
} while(FALSE)
|
|
|
|
|
|
//Returns a list in plain english as a string
|
|
/proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
|
|
var/total = input.len
|
|
if(!total)
|
|
return "[nothing_text]"
|
|
else if(total == 1)
|
|
return "[input[1]]"
|
|
else if(total == 2)
|
|
return "[input[1]][and_text][input[2]]"
|
|
else
|
|
var/output = ""
|
|
var/index = 1
|
|
while(index < total)
|
|
if(index == total - 1)
|
|
comma_text = final_comma_text
|
|
|
|
output += "[input[index]][comma_text]"
|
|
index++
|
|
|
|
return "[output][and_text][input[index]]"
|
|
|
|
//Returns list element or null. Should prevent "index out of bounds" error.
|
|
/proc/listgetindex(list/list, index)
|
|
if(istype(list) && list.len)
|
|
if(isnum(index))
|
|
if(InRange(index,1,list.len))
|
|
return list[index]
|
|
else if(index in list)
|
|
return list[index]
|
|
return
|
|
|
|
//Return either pick(list) or null if list is not of type /list or is empty
|
|
/proc/safepick(list/list)
|
|
if(!islist(list) || !list.len)
|
|
return
|
|
return pick(list)
|
|
|
|
//Checks if the list is empty
|
|
/proc/isemptylist(list/list)
|
|
if(!list.len)
|
|
return 1
|
|
return 0
|
|
|
|
//Checks for specific types in a list
|
|
/proc/is_type_in_list(datum/D, list/L)
|
|
if(!L || !length(L) || !D)
|
|
return FALSE
|
|
for(var/type in L)
|
|
if(istype(D, type))
|
|
return TRUE
|
|
return FALSE
|
|
|
|
//Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches')
|
|
/proc/is_type_in_typecache(atom/A, list/L)
|
|
if(!L || !L.len || !A)
|
|
return 0
|
|
return L[A.type]
|
|
|
|
//returns a new list with only atoms that are in typecache L
|
|
/proc/typecache_filter_list(list/atoms, list/typecache)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if(typecache[A.type])
|
|
. += A
|
|
|
|
/proc/typecache_filter_list_reverse(list/atoms, list/typecache)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if(!typecache[A.type])
|
|
. += A
|
|
|
|
/proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if(typecache_include[A.type] && !typecache_exclude[A.type])
|
|
. += A
|
|
|
|
//Like typesof() or subtypesof(), but returns a typecache instead of a list
|
|
/proc/typecacheof(path, ignore_root_path, only_root_path = FALSE)
|
|
if(ispath(path))
|
|
var/list/types = list()
|
|
if(only_root_path)
|
|
types = list(path)
|
|
else
|
|
types = ignore_root_path ? subtypesof(path) : typesof(path)
|
|
var/list/L = list()
|
|
for(var/T in types)
|
|
L[T] = TRUE
|
|
return L
|
|
else if(islist(path))
|
|
var/list/pathlist = path
|
|
var/list/L = list()
|
|
if(ignore_root_path)
|
|
for(var/P in pathlist)
|
|
for(var/T in subtypesof(P))
|
|
L[T] = TRUE
|
|
else
|
|
for(var/P in pathlist)
|
|
if(only_root_path)
|
|
L[P] = TRUE
|
|
else
|
|
for(var/T in typesof(P))
|
|
L[T] = TRUE
|
|
return L
|
|
|
|
//Removes any null entries from the list
|
|
/proc/listclearnulls(list/list)
|
|
if(istype(list))
|
|
while(null in list)
|
|
list -= null
|
|
return
|
|
|
|
/*
|
|
* Returns list containing all the entries from first list that are not present in second.
|
|
* If skiprep = 1, repeated elements are treated as one.
|
|
* If either of arguments is not a list, returns null
|
|
*/
|
|
/proc/difflist(list/first, list/second, skiprep=0)
|
|
if(!islist(first) || !islist(second))
|
|
return
|
|
var/list/result = new
|
|
if(skiprep)
|
|
for(var/e in first)
|
|
if(!(e in result) && !(e in second))
|
|
result += e
|
|
else
|
|
result = first - second
|
|
|
|
return result
|
|
|
|
/*
|
|
* Returns list containing entries that are in either list but not both.
|
|
* If skipref = 1, repeated elements are treated as one.
|
|
* If either of arguments is not a list, returns null
|
|
*/
|
|
/proc/uniquemergelist(list/first, list/second, skiprep=0)
|
|
if(!islist(first) || !islist(second))
|
|
return
|
|
var/list/result = new
|
|
if(skiprep)
|
|
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
|
|
else
|
|
result = first ^ second
|
|
return result
|
|
|
|
/**
|
|
* Picks an element based on its weight.
|
|
* L - The input list
|
|
*
|
|
* example: list("a" = 1, "b" = 2) will pick "b" 2/3s of the time
|
|
*/
|
|
/proc/pickweight(list/L)
|
|
var/total = 0
|
|
var/item
|
|
for(item in L)
|
|
if(!L[item])
|
|
L[item] = 1
|
|
total += L[item]
|
|
|
|
total = rand(1, total)
|
|
for(item in L)
|
|
total -=L [item]
|
|
if(total <= 0)
|
|
return item
|
|
|
|
return null
|
|
|
|
//Pick a random element from the list and remove it from the list.
|
|
/proc/pick_n_take(list/listfrom)
|
|
if(listfrom.len > 0)
|
|
var/picked = pick(listfrom)
|
|
listfrom -= picked
|
|
return picked
|
|
return null
|
|
|
|
/**
|
|
* Picks multiple unique elements from the suplied list.
|
|
* If the given list has a length less than the amount given then it will return a list with an equal amount
|
|
*
|
|
* Arguments:
|
|
* * listfrom - The list where to pick from
|
|
* * amount - The amount of elements it tries to pick.
|
|
*/
|
|
/proc/pick_multiple_unique(list/listfrom, amount)
|
|
var/list/result = list()
|
|
var/list/copy = listfrom.Copy() // Ensure the original ain't modified
|
|
while(length(copy) && length(result) < amount)
|
|
var/picked = pick(copy)
|
|
result += picked
|
|
copy -= picked
|
|
return result
|
|
|
|
//Returns the top(last) element from the list and removes it from the list (typical stack function)
|
|
/proc/pop(list/L)
|
|
if(L.len)
|
|
. = L[L.len]
|
|
L.len--
|
|
|
|
/proc/popleft(list/L)
|
|
if(L.len)
|
|
. = L[1]
|
|
L.Cut(1,2)
|
|
|
|
|
|
/*
|
|
* Sorting
|
|
*/
|
|
|
|
//Reverses the order of items in the list
|
|
/proc/reverselist(list/L)
|
|
var/list/output = list()
|
|
if(L)
|
|
for(var/i = L.len; i >= 1; i--)
|
|
output += L[i]
|
|
return output
|
|
|
|
//Randomize: Return the list in a random order
|
|
/proc/shuffle(list/L)
|
|
if(!L)
|
|
return
|
|
L = L.Copy()
|
|
|
|
for(var/i=1, i<L.len, ++i)
|
|
L.Swap(i,rand(i,L.len))
|
|
|
|
return L
|
|
|
|
//Return a list with no duplicate entries
|
|
/proc/uniquelist(list/L)
|
|
. = list()
|
|
for(var/i in L)
|
|
. |= i
|
|
|
|
//Mergesort: divides up the list into halves to begin the sort
|
|
/proc/sortKey(list/client/L, order = 1)
|
|
if(isnull(L) || L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1
|
|
return mergeKey(sortKey(L.Copy(0,middle)), sortKey(L.Copy(middle)), order)
|
|
|
|
//Mergsort: does the actual sorting and returns the results back to sortAtom
|
|
/proc/mergeKey(list/client/L, list/client/R, order = 1)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
var/client/rL = L[Li]
|
|
var/client/rR = R[Ri]
|
|
if(sorttext(rL.ckey, rR.ckey) == order)
|
|
result += L[Li++]
|
|
else
|
|
result += R[Ri++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
//Mergesort: divides up the list into halves to begin the sort
|
|
/proc/sortAtom(list/atom/L, order = 1)
|
|
listclearnulls(L)
|
|
if(isnull(L) || L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1
|
|
return mergeAtoms(sortAtom(L.Copy(0,middle)), sortAtom(L.Copy(middle)), order)
|
|
|
|
//Mergsort: does the actual sorting and returns the results back to sortAtom
|
|
/proc/mergeAtoms(list/atom/L, list/atom/R, order = 1)
|
|
if(!L || !R) return 0
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
var/atom/rL = L[Li]
|
|
var/atom/rR = R[Ri]
|
|
if(sorttext(rL.name, rR.name) == order)
|
|
result += L[Li++]
|
|
else
|
|
result += R[Ri++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
|
|
|
|
|
|
//Mergesort: Specifically for record datums in a list.
|
|
/proc/sortRecord(list/datum/data/record/L, field = "name", order = 1)
|
|
if(isnull(L))
|
|
return list()
|
|
if(L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1
|
|
return mergeRecordLists(sortRecord(L.Copy(0, middle), field, order), sortRecord(L.Copy(middle), field, order), field, order)
|
|
|
|
//Mergsort: does the actual sorting and returns the results back to sortRecord
|
|
/proc/mergeRecordLists(list/datum/data/record/L, list/datum/data/record/R, field = "name", order = 1)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
if(!isnull(L) && !isnull(R))
|
|
while(Li <= L.len && Ri <= R.len)
|
|
var/datum/data/record/rL = L[Li]
|
|
if(isnull(rL))
|
|
L -= rL
|
|
continue
|
|
var/datum/data/record/rR = R[Ri]
|
|
if(isnull(rR))
|
|
R -= rR
|
|
continue
|
|
if(sorttext(rL.fields[field], rR.fields[field]) == order)
|
|
result += L[Li++]
|
|
else
|
|
result += R[Ri++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
|
|
|
|
|
|
//Mergesort: any value in a list
|
|
/proc/sortList(list/L)
|
|
if(L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1 // Copy is first,second-1
|
|
return mergeLists(sortList(L.Copy(0,middle)), sortList(L.Copy(middle))) //second parameter null = to end of list
|
|
|
|
//Mergsorge: uses sortAssoc() but uses the var's name specifically. This should probably be using mergeAtom() instead
|
|
/proc/sortNames(list/L)
|
|
var/list/Q = new()
|
|
for(var/atom/x in L)
|
|
Q[x.name] = x
|
|
return sortAssoc(Q)
|
|
|
|
/proc/mergeLists(list/L, list/R)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
if(sorttext(L[Li], R[Ri]) < 1)
|
|
result += R[Ri++]
|
|
else
|
|
result += L[Li++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
|
|
// List of lists, sorts by element[key] - for things like crew monitoring computer sorting records by name.
|
|
/proc/sortByKey(list/L, key)
|
|
if(L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1
|
|
return mergeKeyedLists(sortByKey(L.Copy(0, middle), key), sortByKey(L.Copy(middle), key), key)
|
|
|
|
/proc/mergeKeyedLists(list/L, list/R, key)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
if(sorttext(L[Li][key], R[Ri][key]) < 1)
|
|
// Works around list += list2 merging lists; it's not pretty but it works
|
|
result += "temp item"
|
|
result[result.len] = R[Ri++]
|
|
else
|
|
result += "temp item"
|
|
result[result.len] = L[Li++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
|
|
//Mergesort: any value in a list, preserves key=value structure
|
|
/proc/sortAssoc(list/L)
|
|
if(L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1 // Copy is first,second-1
|
|
return mergeAssoc(sortAssoc(L.Copy(0,middle)), sortAssoc(L.Copy(middle))) //second parameter null = to end of list
|
|
|
|
/proc/mergeAssoc(list/L, list/R)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
if(sorttext(L[Li], R[Ri]) < 1)
|
|
result += R&R[Ri++]
|
|
else
|
|
result += L&L[Li++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
//Converts a bitfield to a list of numbers (or words if a wordlist is provided)
|
|
/proc/bitfield2list(bitfield = 0, list/wordlist)
|
|
var/list/r = list()
|
|
if(istype(wordlist,/list))
|
|
var/max = min(wordlist.len,16)
|
|
var/bit = 1
|
|
for(var/i=1, i<=max, i++)
|
|
if(bitfield & bit)
|
|
r += wordlist[i]
|
|
bit = bit << 1
|
|
else
|
|
for(var/bit=1, bit<=65535, bit = bit << 1)
|
|
if(bitfield & bit)
|
|
r += bit
|
|
|
|
return r
|
|
|
|
// Returns the key based on the index
|
|
/proc/get_key_by_index(list/L, index)
|
|
var/i = 1
|
|
for(var/key in L)
|
|
if(index == i)
|
|
return key
|
|
i++
|
|
return null
|
|
|
|
/proc/count_by_type(list/L, type)
|
|
var/i = 0
|
|
for(var/T in L)
|
|
if(istype(T, type))
|
|
i++
|
|
return i
|
|
|
|
//Don't use this on lists larger than half a dozen or so
|
|
/proc/insertion_sort_numeric_list_ascending(list/L)
|
|
//log_world("ascending len input: [L.len]")
|
|
var/list/out = list(pop(L))
|
|
for(var/entry in L)
|
|
if(isnum(entry))
|
|
var/success = 0
|
|
for(var/i=1, i<=out.len, i++)
|
|
if(entry <= out[i])
|
|
success = 1
|
|
out.Insert(i, entry)
|
|
break
|
|
if(!success)
|
|
out.Add(entry)
|
|
|
|
//log_world(" output: [out.len]")
|
|
return out
|
|
|
|
/proc/insertion_sort_numeric_list_descending(list/L)
|
|
//log_world("descending len input: [L.len]")
|
|
var/list/out = insertion_sort_numeric_list_ascending(L)
|
|
//log_world(" output: [out.len]")
|
|
return reverselist(out)
|
|
|
|
//Copies a list, and all lists inside it recusively
|
|
//Does not copy any other reference type
|
|
/proc/deepCopyList(list/l)
|
|
if(!islist(l))
|
|
return l
|
|
. = l.Copy()
|
|
for(var/i = 1 to l.len)
|
|
if(islist(.[i]))
|
|
.[i] = .(.[i])
|
|
|
|
/proc/dd_sortedObjectList(list/L, list/cache = list())
|
|
if(L.len < 2)
|
|
return L
|
|
var/middle = L.len / 2 + 1 // Copy is first,second-1
|
|
return dd_mergeObjectList(dd_sortedObjectList(L.Copy(0,middle), cache), dd_sortedObjectList(L.Copy(middle), cache), cache) //second parameter null = to end of list
|
|
|
|
/proc/dd_mergeObjectList(list/L, list/R, list/cache)
|
|
var/Li=1
|
|
var/Ri=1
|
|
var/list/result = new()
|
|
while(Li <= L.len && Ri <= R.len)
|
|
var/LLi = L[Li]
|
|
var/RRi = R[Ri]
|
|
var/LLiV = cache[LLi]
|
|
var/RRiV = cache[RRi]
|
|
if(!LLiV)
|
|
LLiV = LLi:dd_SortValue()
|
|
cache[LLi] = LLiV
|
|
if(!RRiV)
|
|
RRiV = RRi:dd_SortValue()
|
|
cache[RRi] = RRiV
|
|
if(LLiV < RRiV)
|
|
result += L[Li++]
|
|
else
|
|
result += R[Ri++]
|
|
|
|
if(Li <= L.len)
|
|
return (result + L.Copy(Li, 0))
|
|
return (result + R.Copy(Ri, 0))
|
|
|
|
// Insert an object into a sorted list, preserving sortedness
|
|
/proc/dd_insertObjectList(list/L, O)
|
|
var/min = 1
|
|
var/max = L.len
|
|
var/Oval = O:dd_SortValue()
|
|
|
|
while(1)
|
|
var/mid = min+round((max-min)/2)
|
|
|
|
if(mid == max)
|
|
L.Insert(mid, O)
|
|
return
|
|
|
|
var/Lmid = L[mid]
|
|
var/midval = Lmid:dd_SortValue()
|
|
if(Oval == midval)
|
|
L.Insert(mid, O)
|
|
return
|
|
else if(Oval < midval)
|
|
max = mid
|
|
else
|
|
min = mid+1
|
|
|
|
/proc/dd_sortedtextlist(list/incoming, case_sensitive = 0)
|
|
// Returns a new list with the text values sorted.
|
|
// Use binary search to order by sortValue.
|
|
// This works by going to the half-point of the list, seeing if the node in question is higher or lower cost,
|
|
// then going halfway up or down the list and checking again.
|
|
// This is a very fast way to sort an item into a list.
|
|
var/list/sorted_text = new()
|
|
var/low_index
|
|
var/high_index
|
|
var/insert_index
|
|
var/midway_calc
|
|
var/current_index
|
|
var/current_item
|
|
var/list/list_bottom
|
|
var/sort_result
|
|
|
|
var/current_sort_text
|
|
for(current_sort_text in incoming)
|
|
low_index = 1
|
|
high_index = sorted_text.len
|
|
while(low_index <= high_index)
|
|
// Figure out the midpoint, rounding up for fractions. (BYOND rounds down, so add 1 if necessary.)
|
|
midway_calc = (low_index + high_index) / 2
|
|
current_index = round(midway_calc)
|
|
if(midway_calc > current_index)
|
|
current_index++
|
|
current_item = sorted_text[current_index]
|
|
|
|
if(case_sensitive)
|
|
sort_result = sorttextEx(current_sort_text, current_item)
|
|
else
|
|
sort_result = sorttext(current_sort_text, current_item)
|
|
|
|
switch(sort_result)
|
|
if(1)
|
|
high_index = current_index - 1 // current_sort_text < current_item
|
|
if(-1)
|
|
low_index = current_index + 1 // current_sort_text > current_item
|
|
if(0)
|
|
low_index = current_index // current_sort_text == current_item
|
|
break
|
|
|
|
// Insert before low_index.
|
|
insert_index = low_index
|
|
|
|
// Special case adding to end of list.
|
|
if(insert_index > sorted_text.len)
|
|
sorted_text += current_sort_text
|
|
continue
|
|
|
|
// Because BYOND lists don't support insert, have to do it by:
|
|
// 1) taking out bottom of list, 2) adding item, 3) putting back bottom of list.
|
|
list_bottom = sorted_text.Copy(insert_index)
|
|
sorted_text.Cut(insert_index)
|
|
sorted_text += current_sort_text
|
|
sorted_text += list_bottom
|
|
return sorted_text
|
|
|
|
|
|
/proc/dd_sortedTextList(list/incoming)
|
|
var/case_sensitive = 1
|
|
return dd_sortedtextlist(incoming, case_sensitive)
|
|
|
|
/proc/subtypesof(path) //Returns a list containing all subtypes of the given path, but not the given path itself.
|
|
if(!path || !ispath(path))
|
|
CRASH("Invalid path, failed to fetch subtypes of \"[path]\".")
|
|
return (typesof(path) - path)
|
|
|
|
/datum/proc/dd_SortValue()
|
|
return "[src]"
|
|
|
|
/obj/machinery/dd_SortValue()
|
|
return "[sanitize(name)]"
|
|
|
|
/obj/machinery/camera/dd_SortValue()
|
|
return "[c_tag]"
|
|
|
|
//Picks from the list, with some safeties, and returns the "default" arg if it fails
|
|
#define DEFAULTPICK(L, default) ((istype(L, /list) && L:len) ? pick(L) : default)
|
|
|
|
#define LAZYINITLIST(L) if (!L) L = list()
|
|
|
|
#define UNSETEMPTY(L) if (L && !L.len) L = null
|
|
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!L.len) { L = null; } }
|
|
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
|
|
/// Adds I to L, initializing L if necessary, if I is not already in L
|
|
#define LAZYDISTINCTADD(L, I) if(!L) { L = list(); } L |= I;
|
|
#define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= L.len ? L[I] : null) : L[I]) : null)
|
|
#define LAZYLEN(L) length(L) // Despite how pointless this looks, it's still needed in order to convey that the list is specificially a 'Lazy' list.
|
|
#define LAZYCLEARLIST(L) if(L) L.Cut()
|
|
|
|
// LAZYING PT 2: THE LAZENING
|
|
#define LAZYREINITLIST(L) LAZYCLEARLIST(L); LAZYINITLIST(L);
|
|
|
|
// Lazying Episode 3
|
|
#define LAZYSET(L, K, V) LAZYINITLIST(L); L[K] = V;
|
|
|
|
#define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += list(V);
|
|
#define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; }
|
|
|
|
/// Returns whether a numerical index is within a given list's bounds. Faster than isnull(LAZYACCESS(L, I)).
|
|
#define ISINDEXSAFE(L, I) (I >= 1 && I <= length(L))
|
|
///If the lazy list is currently initialized find item I in list L
|
|
#define LAZYIN(L, I) (L && (I in L))
|
|
|
|
//same, but returns nothing and acts on list in place
|
|
/proc/shuffle_inplace(list/L)
|
|
if(!L)
|
|
return
|
|
|
|
for(var/i=1, i<L.len, ++i)
|
|
L.Swap(i,rand(i,L.len))
|
|
|
|
//Return a list with no duplicate entries
|
|
/proc/uniqueList(list/L)
|
|
. = list()
|
|
for(var/i in L)
|
|
. |= i
|
|
|
|
//same, but returns nothing and acts on list in place (also handles associated values properly)
|
|
/proc/uniqueList_inplace(list/L)
|
|
var/temp = L.Copy()
|
|
L.len = 0
|
|
for(var/key in temp)
|
|
if(isnum(key))
|
|
L |= key
|
|
else
|
|
L[key] = temp[key]
|
|
|
|
//Move a single element from position fromIndex within a list, to position toIndex
|
|
//All elements in the range [1,toIndex) before the move will be before the pivot afterwards
|
|
//All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards
|
|
//In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages.
|
|
//fromIndex and toIndex must be in the range [1,L.len+1]
|
|
//This will preserve associations ~Carnie
|
|
/proc/moveElement(list/L, fromIndex, toIndex)
|
|
if(fromIndex == toIndex || fromIndex + 1 == toIndex) //no need to move
|
|
return
|
|
if(fromIndex > toIndex)
|
|
++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one
|
|
|
|
L.Insert(toIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(fromIndex, fromIndex + 1)
|
|
|
|
|
|
//Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex)
|
|
//Same as moveElement but for ranges of elements
|
|
//This will preserve associations ~Carnie
|
|
/proc/moveRange(list/L, fromIndex, toIndex, len = 1)
|
|
var/distance = abs(toIndex - fromIndex)
|
|
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
|
|
if(fromIndex <= toIndex)
|
|
return //no need to move
|
|
fromIndex += len //we want to shift left instead of right
|
|
|
|
for(var/i = 0, i < distance, ++i)
|
|
L.Insert(fromIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(toIndex, toIndex + 1)
|
|
else
|
|
if(fromIndex > toIndex)
|
|
fromIndex += len
|
|
|
|
for(var/i = 0, i < len, ++i)
|
|
L.Insert(toIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(fromIndex, fromIndex + 1)
|
|
|
|
//Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len)
|
|
//Move any elements being overwritten by the move to the now-empty elements, preserving order
|
|
//Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
|
|
/proc/swapRange(list/L, fromIndex, toIndex, len = 1)
|
|
var/distance = abs(toIndex - fromIndex)
|
|
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
|
|
if(fromIndex < toIndex)
|
|
toIndex += len
|
|
else
|
|
fromIndex += len
|
|
|
|
for(var/i = 0, i < distance, ++i)
|
|
L.Insert(fromIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(toIndex, toIndex + 1)
|
|
else
|
|
if(toIndex > fromIndex)
|
|
var/a = toIndex
|
|
toIndex = fromIndex
|
|
fromIndex = a
|
|
|
|
for(var/i = 0, i < len, ++i)
|
|
L.Swap(fromIndex++, toIndex++)
|
|
|
|
//replaces reverseList ~Carnie
|
|
/proc/reverseRange(list/L, start = 1, end = 0)
|
|
if(L.len)
|
|
start = start % L.len
|
|
end = end % (L.len + 1)
|
|
if(start <= 0)
|
|
start += L.len
|
|
if(end <= 0)
|
|
end += L.len + 1
|
|
|
|
--end
|
|
while(start < end)
|
|
L.Swap(start++, end--)
|
|
|
|
return L
|
|
|
|
/proc/counterlist_scale(list/L, scalar)
|
|
var/list/out = list()
|
|
for(var/key in L)
|
|
out[key] = L[key] * scalar
|
|
. = out
|
|
|
|
/proc/counterlist_sum(list/L)
|
|
. = 0
|
|
for(var/key in L)
|
|
. += L[key]
|
|
|
|
/proc/counterlist_normalise(list/L)
|
|
var/avg = counterlist_sum(L)
|
|
if(avg != 0)
|
|
. = counterlist_scale(L, 1 / avg)
|
|
else
|
|
. = L
|
|
|
|
/proc/counterlist_combine(list/L1, list/L2)
|
|
for(var/key in L2)
|
|
var/other_value = L2[key]
|
|
if(key in L1)
|
|
L1[key] += other_value
|
|
else
|
|
L1[key] = other_value
|
|
|
|
/**
|
|
* A proc for turning a list into an associative list.
|
|
*
|
|
* A simple proc for turning all things in a list into an associative list, instead
|
|
* Each item in the list will have an associative value of TRUE
|
|
|
|
* Arguments:
|
|
* * flat_list - the list that it passes to make associative
|
|
*/
|
|
|
|
/proc/make_associative(list/flat_list)
|
|
. = list()
|
|
for(var/thing in flat_list)
|
|
.[thing] = TRUE
|
|
|
|
///compare two lists, returns TRUE if they are the same
|
|
/proc/compare_list(list/l, list/d)
|
|
if(!islist(l) || !islist(d))
|
|
return FALSE
|
|
|
|
if(length(l) != length(d))
|
|
return FALSE
|
|
|
|
for(var/i in 1 to length(l))
|
|
if(l[i] != d[i])
|
|
return FALSE
|
|
|
|
return TRUE
|
|
|
|
// Pick something else from a list than we last picked
|
|
/proc/pick_excluding(list/l, exclude)
|
|
return pick(l - exclude)
|