Files
Paradise/code/__HELPERS/lists.dm
Contrabang e754819607 Merges LAZYDISTINCTADD and LAZYADDOR (#22138)
* kills off LAZYDISTINCTADD

* Changes it to Distinct Add...
2023-08-28 15:44:56 +01:00

868 lines
23 KiB
Plaintext

/*
* Holds procs to help with list operations
* Contains groups:
* Misc
* Sorting
*/
/*
* Misc
*/
// binary search sorted insert
// IN: Object to be inserted
// LIST: List to insert object into
// TYPECONT: The typepath of the contents of the list
// COMPARE: The variable on the objects to compare
#define BINARY_INSERT(IN, LIST, TYPECONT, COMPARE) \
var/__BIN_CTTL = length(LIST);\
if(!__BIN_CTTL) {\
LIST += IN;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var/##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = LIST[__BIN_MID];\
if(__BIN_ITEM.##COMPARE <= IN.##COMPARE) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = LIST[__BIN_MID];\
__BIN_MID = __BIN_ITEM.##COMPARE > IN.##COMPARE ? __BIN_MID : __BIN_MID + 1;\
LIST.Insert(__BIN_MID, IN);\
}
/// Passed into BINARY_INSERT to compare keys
#define COMPARE_KEY __BIN_LIST[__BIN_MID]
/// Passed into BINARY_INSERT to compare values
#define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]]
/****
* Binary search sorted insert from TG
* INPUT: Object to be inserted
* LIST: List to insert object into
* TYPECONT: The typepath of the contents of the list
* COMPARE: The object to compare against, usualy the same as INPUT
* COMPARISON: The variable on the objects to compare
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT_TG(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var ##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
//Returns a list in plain english as a string
/proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
var/total = input.len
if(!total)
return "[nothing_text]"
else if(total == 1)
return "[input[1]]"
else if(total == 2)
return "[input[1]][and_text][input[2]]"
else
var/output = ""
var/index = 1
while(index < total)
if(index == total - 1)
comma_text = final_comma_text
output += "[input[index]][comma_text]"
index++
return "[output][and_text][input[index]]"
//Returns list element or null. Should prevent "index out of bounds" error.
/proc/listgetindex(list/list, index)
if(istype(list) && list.len)
if(isnum(index))
if(InRange(index,1,list.len))
return list[index]
else if(index in list)
return list[index]
return
//Return either pick(list) or null if list is not of type /list or is empty
/proc/safepick(list/list)
if(!islist(list) || !list.len)
return
return pick(list)
//Checks if the list is empty
/proc/isemptylist(list/list)
if(!list.len)
return 1
return 0
//Checks for specific types in a list
/proc/is_type_in_list(datum/D, list/L)
if(!L || !length(L) || !D)
return FALSE
for(var/type in L)
if(istype(D, type))
return TRUE
return FALSE
//Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches')
/proc/is_type_in_typecache(atom/A, list/L)
if(!L || !L.len || !A)
return 0
return L[A.type]
//returns a new list with only atoms that are in typecache L
/proc/typecache_filter_list(list/atoms, list/typecache)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if(typecache[A.type])
. += A
/proc/typecache_filter_list_reverse(list/atoms, list/typecache)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if(!typecache[A.type])
. += A
/proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude)
. = list()
for(var/thing in atoms)
var/atom/A = thing
if(typecache_include[A.type] && !typecache_exclude[A.type])
. += A
//Like typesof() or subtypesof(), but returns a typecache instead of a list
/proc/typecacheof(path, ignore_root_path, only_root_path = FALSE)
if(ispath(path))
var/list/types = list()
if(only_root_path)
types = list(path)
else
types = ignore_root_path ? subtypesof(path) : typesof(path)
var/list/L = list()
for(var/T in types)
L[T] = TRUE
return L
else if(islist(path))
var/list/pathlist = path
var/list/L = list()
if(ignore_root_path)
for(var/P in pathlist)
for(var/T in subtypesof(P))
L[T] = TRUE
else
for(var/P in pathlist)
if(only_root_path)
L[P] = TRUE
else
for(var/T in typesof(P))
L[T] = TRUE
return L
//Removes any null entries from the list
/proc/listclearnulls(list/list)
if(istype(list))
while(null in list)
list -= null
return
/*
* Returns list containing all the entries from first list that are not present in second.
* If skiprep = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/difflist(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
for(var/e in first)
if(!(e in result) && !(e in second))
result += e
else
result = first - second
return result
/*
* Returns list containing entries that are in either list but not both.
* If skipref = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/uniquemergelist(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
else
result = first ^ second
return result
/**
* Picks an element based on its weight.
* L - The input list
*
* example: list("a" = 1, "b" = 2) will pick "b" 2/3s of the time
*/
/proc/pickweight(list/L)
var/total = 0
var/item
for(item in L)
if(!L[item])
L[item] = 1
total += L[item]
total = rand(1, total)
for(item in L)
total -=L [item]
if(total <= 0)
return item
return null
//Pick a random element from the list and remove it from the list.
/proc/pick_n_take(list/listfrom)
if(listfrom.len > 0)
var/picked = pick(listfrom)
listfrom -= picked
return picked
return null
/**
* Picks multiple unique elements from the suplied list.
* If the given list has a length less than the amount given then it will return a list with an equal amount
*
* Arguments:
* * listfrom - The list where to pick from
* * amount - The amount of elements it tries to pick.
*/
/proc/pick_multiple_unique(list/listfrom, amount)
var/list/result = list()
var/list/copy = listfrom.Copy() // Ensure the original ain't modified
while(length(copy) && length(result) < amount)
var/picked = pick(copy)
result += picked
copy -= picked
return result
//Returns the top(last) element from the list and removes it from the list (typical stack function)
/proc/pop(list/L)
if(L.len)
. = L[L.len]
L.len--
/proc/popleft(list/L)
if(L.len)
. = L[1]
L.Cut(1,2)
/*
* Sorting
*/
//Reverses the order of items in the list
/proc/reverselist(list/L)
var/list/output = list()
if(L)
for(var/i = L.len; i >= 1; i--)
output += L[i]
return output
//Randomize: Return the list in a random order
/proc/shuffle(list/L)
if(!L)
return
L = L.Copy()
for(var/i=1, i<L.len, ++i)
L.Swap(i,rand(i,L.len))
return L
//Return a list with no duplicate entries
/proc/uniquelist(list/L)
. = list()
for(var/i in L)
. |= i
//Mergesort: divides up the list into halves to begin the sort
/proc/sortKey(list/client/L, order = 1)
if(isnull(L) || L.len < 2)
return L
var/middle = L.len / 2 + 1
return mergeKey(sortKey(L.Copy(0,middle)), sortKey(L.Copy(middle)), order)
//Mergsort: does the actual sorting and returns the results back to sortAtom
/proc/mergeKey(list/client/L, list/client/R, order = 1)
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
var/client/rL = L[Li]
var/client/rR = R[Ri]
if(sorttext(rL.ckey, rR.ckey) == order)
result += L[Li++]
else
result += R[Ri++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
//Mergesort: divides up the list into halves to begin the sort
/proc/sortAtom(list/atom/L, order = 1)
listclearnulls(L)
if(isnull(L) || L.len < 2)
return L
var/middle = L.len / 2 + 1
return mergeAtoms(sortAtom(L.Copy(0,middle)), sortAtom(L.Copy(middle)), order)
//Mergsort: does the actual sorting and returns the results back to sortAtom
/proc/mergeAtoms(list/atom/L, list/atom/R, order = 1)
if(!L || !R) return 0
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
var/atom/rL = L[Li]
var/atom/rR = R[Ri]
if(sorttext(rL.name, rR.name) == order)
result += L[Li++]
else
result += R[Ri++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
//Mergesort: Specifically for record datums in a list.
/proc/sortRecord(list/datum/data/record/L, field = "name", order = 1)
if(isnull(L))
return list()
if(L.len < 2)
return L
var/middle = L.len / 2 + 1
return mergeRecordLists(sortRecord(L.Copy(0, middle), field, order), sortRecord(L.Copy(middle), field, order), field, order)
//Mergsort: does the actual sorting and returns the results back to sortRecord
/proc/mergeRecordLists(list/datum/data/record/L, list/datum/data/record/R, field = "name", order = 1)
var/Li=1
var/Ri=1
var/list/result = new()
if(!isnull(L) && !isnull(R))
while(Li <= L.len && Ri <= R.len)
var/datum/data/record/rL = L[Li]
if(isnull(rL))
L -= rL
continue
var/datum/data/record/rR = R[Ri]
if(isnull(rR))
R -= rR
continue
if(sorttext(rL.fields[field], rR.fields[field]) == order)
result += L[Li++]
else
result += R[Ri++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
//Mergesort: any value in a list
/proc/sortList(list/L)
if(L.len < 2)
return L
var/middle = L.len / 2 + 1 // Copy is first,second-1
return mergeLists(sortList(L.Copy(0,middle)), sortList(L.Copy(middle))) //second parameter null = to end of list
//Mergsorge: uses sortAssoc() but uses the var's name specifically. This should probably be using mergeAtom() instead
/proc/sortNames(list/L)
var/list/Q = new()
for(var/atom/x in L)
Q[x.name] = x
return sortAssoc(Q)
/proc/mergeLists(list/L, list/R)
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
if(sorttext(L[Li], R[Ri]) < 1)
result += R[Ri++]
else
result += L[Li++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
// List of lists, sorts by element[key] - for things like crew monitoring computer sorting records by name.
/proc/sortByKey(list/L, key)
if(L.len < 2)
return L
var/middle = L.len / 2 + 1
return mergeKeyedLists(sortByKey(L.Copy(0, middle), key), sortByKey(L.Copy(middle), key), key)
/proc/mergeKeyedLists(list/L, list/R, key)
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
if(sorttext(L[Li][key], R[Ri][key]) < 1)
// Works around list += list2 merging lists; it's not pretty but it works
result += "temp item"
result[result.len] = R[Ri++]
else
result += "temp item"
result[result.len] = L[Li++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
//Mergesort: any value in a list, preserves key=value structure
/proc/sortAssoc(list/L)
if(L.len < 2)
return L
var/middle = L.len / 2 + 1 // Copy is first,second-1
return mergeAssoc(sortAssoc(L.Copy(0,middle)), sortAssoc(L.Copy(middle))) //second parameter null = to end of list
/proc/mergeAssoc(list/L, list/R)
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
if(sorttext(L[Li], R[Ri]) < 1)
result += R&R[Ri++]
else
result += L&L[Li++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
//Converts a bitfield to a list of numbers (or words if a wordlist is provided)
/proc/bitfield2list(bitfield = 0, list/wordlist)
var/list/r = list()
if(istype(wordlist,/list))
var/max = min(wordlist.len,16)
var/bit = 1
for(var/i=1, i<=max, i++)
if(bitfield & bit)
r += wordlist[i]
bit = bit << 1
else
for(var/bit=1, bit<=65535, bit = bit << 1)
if(bitfield & bit)
r += bit
return r
// Returns the key based on the index
/proc/get_key_by_index(list/L, index)
var/i = 1
for(var/key in L)
if(index == i)
return key
i++
return null
/proc/count_by_type(list/L, type)
var/i = 0
for(var/T in L)
if(istype(T, type))
i++
return i
//Don't use this on lists larger than half a dozen or so
/proc/insertion_sort_numeric_list_ascending(list/L)
//log_world("ascending len input: [L.len]")
var/list/out = list(pop(L))
for(var/entry in L)
if(isnum(entry))
var/success = 0
for(var/i=1, i<=out.len, i++)
if(entry <= out[i])
success = 1
out.Insert(i, entry)
break
if(!success)
out.Add(entry)
//log_world(" output: [out.len]")
return out
/proc/insertion_sort_numeric_list_descending(list/L)
//log_world("descending len input: [L.len]")
var/list/out = insertion_sort_numeric_list_ascending(L)
//log_world(" output: [out.len]")
return reverselist(out)
//Copies a list, and all lists inside it recusively
//Does not copy any other reference type
/proc/deepCopyList(list/l)
if(!islist(l))
return l
. = l.Copy()
for(var/i = 1 to l.len)
if(islist(.[i]))
.[i] = .(.[i])
/proc/dd_sortedObjectList(list/L, list/cache = list())
if(L.len < 2)
return L
var/middle = L.len / 2 + 1 // Copy is first,second-1
return dd_mergeObjectList(dd_sortedObjectList(L.Copy(0,middle), cache), dd_sortedObjectList(L.Copy(middle), cache), cache) //second parameter null = to end of list
/proc/dd_mergeObjectList(list/L, list/R, list/cache)
var/Li=1
var/Ri=1
var/list/result = new()
while(Li <= L.len && Ri <= R.len)
var/LLi = L[Li]
var/RRi = R[Ri]
var/LLiV = cache[LLi]
var/RRiV = cache[RRi]
if(!LLiV)
LLiV = LLi:dd_SortValue()
cache[LLi] = LLiV
if(!RRiV)
RRiV = RRi:dd_SortValue()
cache[RRi] = RRiV
if(LLiV < RRiV)
result += L[Li++]
else
result += R[Ri++]
if(Li <= L.len)
return (result + L.Copy(Li, 0))
return (result + R.Copy(Ri, 0))
// Insert an object into a sorted list, preserving sortedness
/proc/dd_insertObjectList(list/L, O)
var/min = 1
var/max = L.len
var/Oval = O:dd_SortValue()
while(1)
var/mid = min+round((max-min)/2)
if(mid == max)
L.Insert(mid, O)
return
var/Lmid = L[mid]
var/midval = Lmid:dd_SortValue()
if(Oval == midval)
L.Insert(mid, O)
return
else if(Oval < midval)
max = mid
else
min = mid+1
/proc/dd_sortedtextlist(list/incoming, case_sensitive = 0)
// Returns a new list with the text values sorted.
// Use binary search to order by sortValue.
// This works by going to the half-point of the list, seeing if the node in question is higher or lower cost,
// then going halfway up or down the list and checking again.
// This is a very fast way to sort an item into a list.
var/list/sorted_text = new()
var/low_index
var/high_index
var/insert_index
var/midway_calc
var/current_index
var/current_item
var/list/list_bottom
var/sort_result
var/current_sort_text
for(current_sort_text in incoming)
low_index = 1
high_index = sorted_text.len
while(low_index <= high_index)
// Figure out the midpoint, rounding up for fractions. (BYOND rounds down, so add 1 if necessary.)
midway_calc = (low_index + high_index) / 2
current_index = round(midway_calc)
if(midway_calc > current_index)
current_index++
current_item = sorted_text[current_index]
if(case_sensitive)
sort_result = sorttextEx(current_sort_text, current_item)
else
sort_result = sorttext(current_sort_text, current_item)
switch(sort_result)
if(1)
high_index = current_index - 1 // current_sort_text < current_item
if(-1)
low_index = current_index + 1 // current_sort_text > current_item
if(0)
low_index = current_index // current_sort_text == current_item
break
// Insert before low_index.
insert_index = low_index
// Special case adding to end of list.
if(insert_index > sorted_text.len)
sorted_text += current_sort_text
continue
// Because BYOND lists don't support insert, have to do it by:
// 1) taking out bottom of list, 2) adding item, 3) putting back bottom of list.
list_bottom = sorted_text.Copy(insert_index)
sorted_text.Cut(insert_index)
sorted_text += current_sort_text
sorted_text += list_bottom
return sorted_text
/proc/dd_sortedTextList(list/incoming)
var/case_sensitive = 1
return dd_sortedtextlist(incoming, case_sensitive)
/proc/subtypesof(path) //Returns a list containing all subtypes of the given path, but not the given path itself.
if(!path || !ispath(path))
CRASH("Invalid path, failed to fetch subtypes of \"[path]\".")
return (typesof(path) - path)
/datum/proc/dd_SortValue()
return "[src]"
/obj/machinery/dd_SortValue()
return "[sanitize(name)]"
/obj/machinery/camera/dd_SortValue()
return "[c_tag]"
//Picks from the list, with some safeties, and returns the "default" arg if it fails
#define DEFAULTPICK(L, default) ((istype(L, /list) && L:len) ? pick(L) : default)
#define LAZYINITLIST(L) if (!L) L = list()
#define UNSETEMPTY(L) if (L && !L.len) L = null
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!L.len) { L = null; } }
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
/// Adds I to L, initializing L if necessary, if I is not already in L
#define LAZYDISTINCTADD(L, I) if(!L) { L = list(); } L |= I;
#define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= L.len ? L[I] : null) : L[I]) : null)
#define LAZYLEN(L) length(L) // Despite how pointless this looks, it's still needed in order to convey that the list is specificially a 'Lazy' list.
#define LAZYCLEARLIST(L) if(L) L.Cut()
// LAZYING PT 2: THE LAZENING
#define LAZYREINITLIST(L) LAZYCLEARLIST(L); LAZYINITLIST(L);
// Lazying Episode 3
#define LAZYSET(L, K, V) LAZYINITLIST(L); L[K] = V;
#define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += list(V);
#define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; }
/// Returns whether a numerical index is within a given list's bounds. Faster than isnull(LAZYACCESS(L, I)).
#define ISINDEXSAFE(L, I) (I >= 1 && I <= length(L))
///If the lazy list is currently initialized find item I in list L
#define LAZYIN(L, I) (L && (I in L))
//same, but returns nothing and acts on list in place
/proc/shuffle_inplace(list/L)
if(!L)
return
for(var/i=1, i<L.len, ++i)
L.Swap(i,rand(i,L.len))
//Return a list with no duplicate entries
/proc/uniqueList(list/L)
. = list()
for(var/i in L)
. |= i
//same, but returns nothing and acts on list in place (also handles associated values properly)
/proc/uniqueList_inplace(list/L)
var/temp = L.Copy()
L.len = 0
for(var/key in temp)
if(isnum(key))
L |= key
else
L[key] = temp[key]
//Move a single element from position fromIndex within a list, to position toIndex
//All elements in the range [1,toIndex) before the move will be before the pivot afterwards
//All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards
//In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages.
//fromIndex and toIndex must be in the range [1,L.len+1]
//This will preserve associations ~Carnie
/proc/moveElement(list/L, fromIndex, toIndex)
if(fromIndex == toIndex || fromIndex + 1 == toIndex) //no need to move
return
if(fromIndex > toIndex)
++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex + 1)
//Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex)
//Same as moveElement but for ranges of elements
//This will preserve associations ~Carnie
/proc/moveRange(list/L, fromIndex, toIndex, len = 1)
var/distance = abs(toIndex - fromIndex)
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
if(fromIndex <= toIndex)
return //no need to move
fromIndex += len //we want to shift left instead of right
for(var/i = 0, i < distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex + 1)
else
if(fromIndex > toIndex)
fromIndex += len
for(var/i = 0, i < len, ++i)
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex + 1)
//Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len)
//Move any elements being overwritten by the move to the now-empty elements, preserving order
//Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
/proc/swapRange(list/L, fromIndex, toIndex, len = 1)
var/distance = abs(toIndex - fromIndex)
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
if(fromIndex < toIndex)
toIndex += len
else
fromIndex += len
for(var/i = 0, i < distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex + 1)
else
if(toIndex > fromIndex)
var/a = toIndex
toIndex = fromIndex
fromIndex = a
for(var/i = 0, i < len, ++i)
L.Swap(fromIndex++, toIndex++)
//replaces reverseList ~Carnie
/proc/reverseRange(list/L, start = 1, end = 0)
if(L.len)
start = start % L.len
end = end % (L.len + 1)
if(start <= 0)
start += L.len
if(end <= 0)
end += L.len + 1
--end
while(start < end)
L.Swap(start++, end--)
return L
/proc/counterlist_scale(list/L, scalar)
var/list/out = list()
for(var/key in L)
out[key] = L[key] * scalar
. = out
/proc/counterlist_sum(list/L)
. = 0
for(var/key in L)
. += L[key]
/proc/counterlist_normalise(list/L)
var/avg = counterlist_sum(L)
if(avg != 0)
. = counterlist_scale(L, 1 / avg)
else
. = L
/proc/counterlist_combine(list/L1, list/L2)
for(var/key in L2)
var/other_value = L2[key]
if(key in L1)
L1[key] += other_value
else
L1[key] = other_value
/**
* A proc for turning a list into an associative list.
*
* A simple proc for turning all things in a list into an associative list, instead
* Each item in the list will have an associative value of TRUE
* Arguments:
* * flat_list - the list that it passes to make associative
*/
/proc/make_associative(list/flat_list)
. = list()
for(var/thing in flat_list)
.[thing] = TRUE
///compare two lists, returns TRUE if they are the same
/proc/compare_list(list/l, list/d)
if(!islist(l) || !islist(d))
return FALSE
if(length(l) != length(d))
return FALSE
for(var/i in 1 to length(l))
if(l[i] != d[i])
return FALSE
return TRUE
// Pick something else from a list than we last picked
/proc/pick_excluding(list/l, exclude)
return pick(l - exclude)