Files
Polaris/code/modules/xgm/xgm_gas_mixture.dm
Leshana 71587c5ad0 Fix rooms holding pressure when exposed to space.
This happens because edges cease processing when the delta between their zones is small enough.  This is normally a fine optimization, but when it results in a room at 4kPa with a window open to space, it breaks imurshuns.

Two main changes to solve this problem without too much cpu cost:
1) Stop edges from sleeping if one side is a hard vacuum.  This ensures that a zone doesn't freeze at a low-but-non-zero pressure when touching hard vacuum.
2) Prevent #1 from causing the edge to stay alive for ages while pressures asymptotically approach zero as they are repeatedly equalized but only half is dumped to space. (Would happen if ZoneA---ZoneB---Space arrangement exists) by detecting when the total amount of air left is small enough that it would normally sleep anyway, and just setting it to zero.

The end outcome is that behavior is mostly the same as before, except when zones have an open path to unsimulated space, they will reach equilibrium at zero instead of semi-random lowish values.
2017-03-15 19:04:33 -04:00

483 lines
17 KiB
Plaintext

/datum/gas_mixture
//Associative list of gas moles.
//Gases with 0 moles are not tracked and are pruned by update_values()
var/list/gas = list()
//Temperature in Kelvin of this gas mix.
var/temperature = 0
//Sum of all the gas moles in this mix. Updated by update_values()
var/total_moles = 0
//Volume of this mix.
var/volume = CELL_VOLUME
//Size of the group this gas_mixture is representing. 1 for singletons.
var/group_multiplier = 1
//List of active tile overlays for this gas_mixture. Updated by check_tile_graphic()
var/list/graphic = list()
/datum/gas_mixture/New(vol = CELL_VOLUME)
volume = vol
//Takes a gas string and the amount of moles to adjust by. Calls update_values() if update isn't 0.
/datum/gas_mixture/proc/adjust_gas(gasid, moles, update = 1)
if(moles == 0)
return
if (group_multiplier != 1)
gas[gasid] += moles/group_multiplier
else
gas[gasid] += moles
if(update)
update_values()
//Same as adjust_gas(), but takes a temperature which is mixed in with the gas.
/datum/gas_mixture/proc/adjust_gas_temp(gasid, moles, temp, update = 1)
if(moles == 0)
return
if(moles > 0 && abs(temperature - temp) > MINIMUM_TEMPERATURE_DELTA_TO_CONSIDER)
var/self_heat_capacity = heat_capacity()
var/giver_heat_capacity = gas_data.specific_heat[gasid] * moles
var/combined_heat_capacity = giver_heat_capacity + self_heat_capacity
if(combined_heat_capacity != 0)
temperature = (temp * giver_heat_capacity + temperature * self_heat_capacity) / combined_heat_capacity
if (group_multiplier != 1)
gas[gasid] += moles/group_multiplier
else
gas[gasid] += moles
if(update)
update_values()
//Variadic version of adjust_gas(). Takes any number of gas and mole pairs and applies them.
/datum/gas_mixture/proc/adjust_multi()
ASSERT(!(args.len % 2))
for(var/i = 1; i < args.len; i += 2)
adjust_gas(args[i], args[i+1], update = 0)
update_values()
//Variadic version of adjust_gas_temp(). Takes any number of gas, mole and temperature associations and applies them.
/datum/gas_mixture/proc/adjust_multi_temp()
ASSERT(!(args.len % 3))
for(var/i = 1; i < args.len; i += 3)
adjust_gas_temp(args[i], args[i + 1], args[i + 2], update = 0)
update_values()
//Merges all the gas from another mixture into this one. Respects group_multipliers and adjusts temperature correctly.
//Does not modify giver in any way.
/datum/gas_mixture/proc/merge(const/datum/gas_mixture/giver)
if(!giver)
return
if(abs(temperature-giver.temperature)>MINIMUM_TEMPERATURE_DELTA_TO_CONSIDER)
var/self_heat_capacity = heat_capacity()
var/giver_heat_capacity = giver.heat_capacity()
var/combined_heat_capacity = giver_heat_capacity + self_heat_capacity
if(combined_heat_capacity != 0)
temperature = (giver.temperature*giver_heat_capacity + temperature*self_heat_capacity)/combined_heat_capacity
if((group_multiplier != 1)||(giver.group_multiplier != 1))
for(var/g in giver.gas)
gas[g] += giver.gas[g] * giver.group_multiplier / group_multiplier
else
for(var/g in giver.gas)
gas[g] += giver.gas[g]
update_values()
// Used to equalize the mixture between two zones before sleeping an edge.
/datum/gas_mixture/proc/equalize(datum/gas_mixture/sharer)
var/our_heatcap = heat_capacity()
var/share_heatcap = sharer.heat_capacity()
// Special exception: there isn't enough air around to be worth processing this edge next tick, zap both to zero.
if(total_moles + sharer.total_moles <= MINIMUM_AIR_TO_SUSPEND)
gas.Cut()
sharer.gas.Cut()
for(var/g in gas|sharer.gas)
var/comb = gas[g] + sharer.gas[g]
comb /= volume + sharer.volume
gas[g] = comb * volume
sharer.gas[g] = comb * sharer.volume
if(our_heatcap + share_heatcap)
temperature = ((temperature * our_heatcap) + (sharer.temperature * share_heatcap)) / (our_heatcap + share_heatcap)
sharer.temperature = temperature
update_values()
sharer.update_values()
return 1
//Returns the heat capacity of the gas mix based on the specific heat of the gases.
/datum/gas_mixture/proc/heat_capacity()
. = 0
for(var/g in gas)
. += gas_data.specific_heat[g] * gas[g]
. *= group_multiplier
//Adds or removes thermal energy. Returns the actual thermal energy change, as in the case of removing energy we can't go below TCMB.
/datum/gas_mixture/proc/add_thermal_energy(var/thermal_energy)
if (total_moles == 0)
return 0
var/heat_capacity = heat_capacity()
if (thermal_energy < 0)
if (temperature < TCMB)
return 0
var/thermal_energy_limit = -(temperature - TCMB)*heat_capacity //ensure temperature does not go below TCMB
thermal_energy = max( thermal_energy, thermal_energy_limit ) //thermal_energy and thermal_energy_limit are negative here.
temperature += thermal_energy/heat_capacity
return thermal_energy
//Returns the thermal energy change required to get to a new temperature
/datum/gas_mixture/proc/get_thermal_energy_change(var/new_temperature)
return heat_capacity()*(max(new_temperature, 0) - temperature)
//Technically vacuum doesn't have a specific entropy. Just use a really big number (infinity would be ideal) here so that it's easy to add gas to vacuum and hard to take gas out.
#define SPECIFIC_ENTROPY_VACUUM 150000
//Returns the ideal gas specific entropy of the whole mix. This is the entropy per mole of /mixed/ gas.
/datum/gas_mixture/proc/specific_entropy()
if (!gas.len || total_moles == 0)
return SPECIFIC_ENTROPY_VACUUM
. = 0
for(var/g in gas)
. += gas[g] * specific_entropy_gas(g)
. /= total_moles
/*
It's arguable whether this should even be called entropy anymore. It's more "based on" entropy than actually entropy now.
Returns the ideal gas specific entropy of a specific gas in the mix. This is the entropy due to that gas per mole of /that/ gas in the mixture, not the entropy due to that gas per mole of gas mixture.
For the purposes of SS13, the specific entropy is just a number that tells you how hard it is to move gas. You can replace this with whatever you want.
Just remember that returning a SMALL number == adding gas to this gas mix is HARD, taking gas away is EASY, and that returning a LARGE number means the opposite (so a vacuum should approach infinity).
So returning a constant/(partial pressure) would probably do what most players expect. Although the version I have implemented below is a bit more nuanced than simply 1/P in that it scales in a way
which is bit more realistic (natural log), and returns a fairly accurate entropy around room temperatures and pressures.
*/
/datum/gas_mixture/proc/specific_entropy_gas(var/gasid)
if (!(gasid in gas) || gas[gasid] == 0)
return SPECIFIC_ENTROPY_VACUUM //that gas isn't here
//group_multiplier gets divided out in volume/gas[gasid] - also, V/(m*T) = R/(partial pressure)
var/molar_mass = gas_data.molar_mass[gasid]
var/specific_heat = gas_data.specific_heat[gasid]
return R_IDEAL_GAS_EQUATION * ( log( (IDEAL_GAS_ENTROPY_CONSTANT*volume/(gas[gasid] * temperature)) * (molar_mass*specific_heat*temperature)**(2/3) + 1 ) + 15 )
//alternative, simpler equation
//var/partial_pressure = gas[gasid] * R_IDEAL_GAS_EQUATION * temperature / volume
//return R_IDEAL_GAS_EQUATION * ( log (1 + IDEAL_GAS_ENTROPY_CONSTANT/partial_pressure) + 20 )
//Updates the total_moles count and trims any empty gases.
/datum/gas_mixture/proc/update_values()
total_moles = 0
for(var/g in gas)
if(gas[g] <= 0)
gas -= g
else
total_moles += gas[g]
//Returns the pressure of the gas mix. Only accurate if there have been no gas modifications since update_values() has been called.
/datum/gas_mixture/proc/return_pressure()
if(volume)
return total_moles * R_IDEAL_GAS_EQUATION * temperature / volume
return 0
//Removes moles from the gas mixture and returns a gas_mixture containing the removed air.
/datum/gas_mixture/proc/remove(amount)
amount = min(amount, total_moles * group_multiplier) //Can not take more air than the gas mixture has!
if(amount <= 0)
return null
var/datum/gas_mixture/removed = new
for(var/g in gas)
removed.gas[g] = QUANTIZE((gas[g] / total_moles) * amount)
gas[g] -= removed.gas[g] / group_multiplier
removed.temperature = temperature
update_values()
removed.update_values()
return removed
//Removes a ratio of gas from the mixture and returns a gas_mixture containing the removed air.
/datum/gas_mixture/proc/remove_ratio(ratio, out_group_multiplier = 1)
if(ratio <= 0)
return null
out_group_multiplier = between(1, out_group_multiplier, group_multiplier)
ratio = min(ratio, 1)
var/datum/gas_mixture/removed = new
removed.group_multiplier = out_group_multiplier
for(var/g in gas)
removed.gas[g] = (gas[g] * ratio * group_multiplier / out_group_multiplier)
gas[g] = gas[g] * (1 - ratio)
removed.temperature = temperature
removed.volume = volume * group_multiplier / out_group_multiplier
update_values()
removed.update_values()
return removed
//Removes a volume of gas from the mixture and returns a gas_mixture containing the removed air with the given volume
/datum/gas_mixture/proc/remove_volume(removed_volume)
var/datum/gas_mixture/removed = remove_ratio(removed_volume/(volume*group_multiplier), 1)
removed.volume = removed_volume
return removed
//Removes moles from the gas mixture, limited by a given flag. Returns a gax_mixture containing the removed air.
/datum/gas_mixture/proc/remove_by_flag(flag, amount)
if(!flag || amount <= 0)
return
var/sum = 0
for(var/g in gas)
if(gas_data.flags[g] & flag)
sum += gas[g]
var/datum/gas_mixture/removed = new
for(var/g in gas)
if(gas_data.flags[g] & flag)
removed.gas[g] = QUANTIZE((gas[g] / sum) * amount)
gas[g] -= removed.gas[g] / group_multiplier
removed.temperature = temperature
update_values()
removed.update_values()
return removed
//Copies gas and temperature from another gas_mixture.
/datum/gas_mixture/proc/copy_from(const/datum/gas_mixture/sample)
gas = sample.gas.Copy()
temperature = sample.temperature
update_values()
return 1
//Checks if we are within acceptable range of another gas_mixture to suspend processing or merge.
/datum/gas_mixture/proc/compare(const/datum/gas_mixture/sample, var/vacuum_exception = 0)
if(!sample) return 0
if(vacuum_exception)
// Special case - If one of the two is zero pressure, the other must also be zero.
// This prevents suspending processing when an air-filled room is next to a vacuum,
// an edge case which is particually obviously wrong to players
if(total_moles == 0 && sample.total_moles != 0 || sample.total_moles == 0 && total_moles != 0)
return 0
var/list/marked = list()
for(var/g in gas)
if((abs(gas[g] - sample.gas[g]) > MINIMUM_AIR_TO_SUSPEND) && \
((gas[g] < (1 - MINIMUM_AIR_RATIO_TO_SUSPEND) * sample.gas[g]) || \
(gas[g] > (1 + MINIMUM_AIR_RATIO_TO_SUSPEND) * sample.gas[g])))
return 0
marked[g] = 1
for(var/g in sample.gas)
if(!marked[g])
if((abs(gas[g] - sample.gas[g]) > MINIMUM_AIR_TO_SUSPEND) && \
((gas[g] < (1 - MINIMUM_AIR_RATIO_TO_SUSPEND) * sample.gas[g]) || \
(gas[g] > (1 + MINIMUM_AIR_RATIO_TO_SUSPEND) * sample.gas[g])))
return 0
if(total_moles > MINIMUM_AIR_TO_SUSPEND)
if((abs(temperature - sample.temperature) > MINIMUM_TEMPERATURE_DELTA_TO_SUSPEND) && \
((temperature < (1 - MINIMUM_TEMPERATURE_RATIO_TO_SUSPEND)*sample.temperature) || \
(temperature > (1 + MINIMUM_TEMPERATURE_RATIO_TO_SUSPEND)*sample.temperature)))
return 0
return 1
/datum/gas_mixture/proc/react()
zburn(null, force_burn=0, no_check=0) //could probably just call zburn() here with no args but I like being explicit.
//Rechecks the gas_mixture and adjusts the graphic list if needed.
//Two lists can be passed by reference if you need know specifically which graphics were added and removed.
/datum/gas_mixture/proc/check_tile_graphic(list/graphic_add = null, list/graphic_remove = null)
for(var/g in gas_data.overlay_limit)
if(graphic.Find(gas_data.tile_overlay[g]))
//Overlay is already applied for this gas, check if it's still valid.
if(gas[g] <= gas_data.overlay_limit[g])
if(!graphic_remove)
graphic_remove = list()
graphic_remove += gas_data.tile_overlay[g]
else
//Overlay isn't applied for this gas, check if it's valid and needs to be added.
if(gas[g] > gas_data.overlay_limit[g])
if(!graphic_add)
graphic_add = list()
graphic_add += gas_data.tile_overlay[g]
. = 0
//Apply changes
if(graphic_add && graphic_add.len)
graphic += graphic_add
. = 1
if(graphic_remove && graphic_remove.len)
graphic -= graphic_remove
. = 1
//Simpler version of merge(), adjusts gas amounts directly and doesn't account for temperature or group_multiplier.
/datum/gas_mixture/proc/add(datum/gas_mixture/right_side)
for(var/g in right_side.gas)
gas[g] += right_side.gas[g]
update_values()
return 1
//Simpler version of remove(), adjusts gas amounts directly and doesn't account for group_multiplier.
/datum/gas_mixture/proc/subtract(datum/gas_mixture/right_side)
for(var/g in right_side.gas)
gas[g] -= right_side.gas[g]
update_values()
return 1
//Multiply all gas amounts by a factor.
/datum/gas_mixture/proc/multiply(factor)
for(var/g in gas)
gas[g] *= factor
update_values()
return 1
//Divide all gas amounts by a factor.
/datum/gas_mixture/proc/divide(factor)
for(var/g in gas)
gas[g] /= factor
update_values()
return 1
//Shares gas with another gas_mixture based on the amount of connecting tiles and a fixed lookup table.
/datum/gas_mixture/proc/share_ratio(datum/gas_mixture/other, connecting_tiles, share_size = null, one_way = 0)
var/static/list/sharing_lookup_table = list(0.30, 0.40, 0.48, 0.54, 0.60, 0.66)
//Shares a specific ratio of gas between mixtures using simple weighted averages.
var/ratio = sharing_lookup_table[6]
var/size = max(1, group_multiplier)
if(isnull(share_size)) share_size = max(1, other.group_multiplier)
var/full_heat_capacity = heat_capacity()
var/s_full_heat_capacity = other.heat_capacity()
var/list/avg_gas = list()
for(var/g in gas)
avg_gas[g] += gas[g] * size
for(var/g in other.gas)
avg_gas[g] += other.gas[g] * share_size
for(var/g in avg_gas)
avg_gas[g] /= (size + share_size)
var/temp_avg = 0
if(full_heat_capacity + s_full_heat_capacity)
temp_avg = (temperature * full_heat_capacity + other.temperature * s_full_heat_capacity) / (full_heat_capacity + s_full_heat_capacity)
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD.
if(sharing_lookup_table.len >= connecting_tiles) //6 or more interconnecting tiles will max at 42% of air moved per tick.
ratio = sharing_lookup_table[connecting_tiles]
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
for(var/g in avg_gas)
gas[g] = max(0, (gas[g] - avg_gas[g]) * (1 - ratio) + avg_gas[g])
if(!one_way)
other.gas[g] = max(0, (other.gas[g] - avg_gas[g]) * (1 - ratio) + avg_gas[g])
temperature = max(0, (temperature - temp_avg) * (1-ratio) + temp_avg)
if(!one_way)
other.temperature = max(0, (other.temperature - temp_avg) * (1-ratio) + temp_avg)
update_values()
other.update_values()
return compare(other)
//A wrapper around share_ratio for spacing gas at the same rate as if it were going into a large airless room.
/datum/gas_mixture/proc/share_space(datum/gas_mixture/unsim_air)
return share_ratio(unsim_air, unsim_air.group_multiplier, max(1, max(group_multiplier + 3, 1) + unsim_air.group_multiplier), one_way = 1)
//Equalizes a list of gas mixtures. Used for pipe networks.
/proc/equalize_gases(datum/gas_mixture/list/gases)
//Calculate totals from individual components
var/total_volume = 0
var/total_thermal_energy = 0
var/total_heat_capacity = 0
var/list/total_gas = list()
for(var/datum/gas_mixture/gasmix in gases)
total_volume += gasmix.volume
var/temp_heatcap = gasmix.heat_capacity()
total_thermal_energy += gasmix.temperature * temp_heatcap
total_heat_capacity += temp_heatcap
for(var/g in gasmix.gas)
total_gas[g] += gasmix.gas[g]
if(total_volume > 0)
var/datum/gas_mixture/combined = new(total_volume)
combined.gas = total_gas
//Calculate temperature
if(total_heat_capacity > 0)
combined.temperature = total_thermal_energy / total_heat_capacity
combined.update_values()
//Allow for reactions
combined.react()
//Average out the gases
for(var/g in combined.gas)
combined.gas[g] /= total_volume
//Update individual gas_mixtures
for(var/datum/gas_mixture/gasmix in gases)
gasmix.gas = combined.gas.Copy()
gasmix.temperature = combined.temperature
gasmix.multiply(gasmix.volume)
return 1