/* * Holds procs to help with list operations * Contains groups: * Misc * Sorting */ /* * Misc */ #define LAZYINITLIST(L) if (!L) L = list() #define UNSETEMPTY(L) if (L && !length(L)) L = null #define LAZYREMOVE(L, I) if(L) { L -= I; if(!length(L)) { L = null; } } #define LAZYADD(L, I) if(!L) { L = list(); } L += I; #define LAZYOR(L, I) if(!L) { L = list(); } L |= I; #define LAZYFIND(L, V) L ? L.Find(V) : 0 #define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= length(L) ? L[I] : null) : L[I]) : null) #define LAZYSET(L, K, V) if(!L) { L = list(); } L[K] = V; #define LAZYLEN(L) length(L) ///Accesses an associative list, returns null if nothing is found #define LAZYACCESSASSOC(L, I, K) L ? L[I] ? L[I][K] ? L[I][K] : null : null : null ///Qdel every item in the list before setting the list to null #define QDEL_LAZYLIST(L) for(var/I in L) qdel(I); L = null; //These methods don't null the list ///Use LAZYLISTDUPLICATE instead if you want it to null with no entries #define LAZYCOPY(L) (L ? L.Copy() : list() ) /// Consider LAZYNULL instead #define LAZYCLEARLIST(L) if(L) L.Cut() ///Returns the list if it's actually a valid list, otherwise will initialize it #define SANITIZE_LIST(L) ( islist(L) ? L : list() ) #define reverseList(L) reverseRange(L.Copy()) #define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += list(V); #define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; } /// Passed into BINARY_INSERT to compare keys #define COMPARE_KEY __BIN_LIST[__BIN_MID] /// Passed into BINARY_INSERT to compare values #define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]] /**** * Binary search sorted insert * INPUT: Object to be inserted * LIST: List to insert object into * TYPECONT: The typepath of the contents of the list * COMPARE: The object to compare against, usualy the same as INPUT * COMPARISON: The variable on the objects to compare * COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE. */ #define BINARY_INSERT(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \ do {\ var/list/__BIN_LIST = LIST;\ var/__BIN_CTTL = length(__BIN_LIST);\ if(!__BIN_CTTL) {\ __BIN_LIST += INPUT;\ } else {\ var/__BIN_LEFT = 1;\ var/__BIN_RIGHT = __BIN_CTTL;\ var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ var ##TYPECONT/__BIN_ITEM;\ while(__BIN_LEFT < __BIN_RIGHT) {\ __BIN_ITEM = COMPTYPE;\ if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\ __BIN_LEFT = __BIN_MID + 1;\ } else {\ __BIN_RIGHT = __BIN_MID;\ };\ __BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ };\ __BIN_ITEM = COMPTYPE;\ __BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\ __BIN_LIST.Insert(__BIN_MID, INPUT);\ };\ } while(FALSE) /** * Custom binary search sorted insert utilising comparison procs instead of vars. * INPUT: Object to be inserted * LIST: List to insert object into * TYPECONT: The typepath of the contents of the list * COMPARE: The object to compare against, usualy the same as INPUT * COMPARISON: The plaintext name of a proc on INPUT that takes a single argument to accept a single element from LIST and returns a positive, negative or zero number to perform a comparison. * COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE. */ #define BINARY_INSERT_PROC_COMPARE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \ do {\ var/list/__BIN_LIST = LIST;\ var/__BIN_CTTL = length(__BIN_LIST);\ if(!__BIN_CTTL) {\ __BIN_LIST += INPUT;\ } else {\ var/__BIN_LEFT = 1;\ var/__BIN_RIGHT = __BIN_CTTL;\ var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ var ##TYPECONT/__BIN_ITEM;\ while(__BIN_LEFT < __BIN_RIGHT) {\ __BIN_ITEM = COMPTYPE;\ if(__BIN_ITEM.##COMPARISON(COMPARE) <= 0) {\ __BIN_LEFT = __BIN_MID + 1;\ } else {\ __BIN_RIGHT = __BIN_MID;\ };\ __BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ };\ __BIN_ITEM = COMPTYPE;\ __BIN_MID = __BIN_ITEM.##COMPARISON(COMPARE) > 0 ? __BIN_MID : __BIN_MID + 1;\ __BIN_LIST.Insert(__BIN_MID, INPUT);\ };\ } while(FALSE) #define SORT_FIRST_INDEX(list) (list[1]) #define SORT_COMPARE_DIRECTLY(thing) (thing) #define SORT_VAR_NO_TYPE(varname) var/varname /**** * Even more custom binary search sorted insert, using defines instead of vars * INPUT: Item to be inserted * LIST: List to insert INPUT into * TYPECONT: A define setting the var to the typepath of the contents of the list * COMPARE: The item to compare against, usualy the same as INPUT * COMPARISON: A define that takes an item to compare as input, and returns their comparable value * COMPTYPE: How should the list be compared? Either COMPARE_KEY or COMPARE_VALUE. */ #define BINARY_INSERT_DEFINE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \ do {\ var/list/__BIN_LIST = LIST;\ var/__BIN_CTTL = length(__BIN_LIST);\ if(!__BIN_CTTL) {\ __BIN_LIST += INPUT;\ } else {\ var/__BIN_LEFT = 1;\ var/__BIN_RIGHT = __BIN_CTTL;\ var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ ##TYPECONT(__BIN_ITEM);\ while(__BIN_LEFT < __BIN_RIGHT) {\ __BIN_ITEM = COMPTYPE;\ if(##COMPARISON(__BIN_ITEM) <= ##COMPARISON(COMPARE)) {\ __BIN_LEFT = __BIN_MID + 1;\ } else {\ __BIN_RIGHT = __BIN_MID;\ };\ __BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\ };\ __BIN_ITEM = COMPTYPE;\ __BIN_MID = ##COMPARISON(__BIN_ITEM) > ##COMPARISON(COMPARE) ? __BIN_MID : __BIN_MID + 1;\ __BIN_LIST.Insert(__BIN_MID, INPUT);\ };\ } while(FALSE) /// Returns a list in plain english as a string /proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" ) var/total = input.len if (!total) return "[nothing_text]" else if (total == 1) return "[input[1]]" else if (total == 2) return "[input[1]][and_text][input[2]]" else var/output = "" var/index = 1 while (index < total) if (index == total - 1) comma_text = final_comma_text output += "[input[index]][comma_text]" index++ return "[output][and_text][input[index]]" /// Returns list element or null. Should prevent "index out of bounds" error. /proc/listgetindex(list/L, index) if(LAZYLEN(L)) if(isnum(index) && ISINTEGER(index)) if(ISINRANGE(index,1,L.len)) return L[index] else if(index in L) return L[index] return /// Return either pick(list) or null if list is not of type /list or is empty /proc/safepick(list/L) if(LAZYLEN(L)) return pick(L) /// Checks if the list is empty /proc/isemptylist(list/L) if(!L.len) return TRUE return FALSE /// Checks for specific types in a list /proc/is_type_in_list(atom/A, list/L) if(!LAZYLEN(L) || !A) return FALSE for(var/type in L) if(istype(A, type)) return TRUE return FALSE /// Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches') #define is_type_in_typecache(A, L) (A && length(L) && L[(ispath(A) ? A : A:type)]) /// Checks for a string in a list /proc/is_string_in_list(string, list/L) if(!LAZYLEN(L) || !string) return for(var/V in L) if(string == V) return TRUE return /// Removes a string from a list /proc/remove_strings_from_list(string, list/L) if(!LAZYLEN(L) || !string) return for(var/V in L) if(V == string) L -= V //No return here so that it removes all strings of that type return /// returns a new list with only atoms that are in typecache L /proc/typecache_filter_list(list/atoms, list/typecache) RETURN_TYPE(/list) . = list() for(var/thing in atoms) var/atom/A = thing if (typecache[A.type]) . += A /// returns a new list with only atoms that are not in typecache L /proc/typecache_filter_list_reverse(list/atoms, list/typecache) RETURN_TYPE(/list) . = list() for(var/thing in atoms) var/atom/A = thing if(!typecache[A.type]) . += A /proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude) . = list() for(var/thing in atoms) var/atom/A = thing if(typecache_include[A.type] && !typecache_exclude[A.type]) . += A /// Like typesof() or subtypesof(), but returns a typecache instead of a list /proc/typecacheof(path, ignore_root_path, only_root_path = FALSE) if(ispath(path)) var/list/types = list() if(only_root_path) types = list(path) else types = ignore_root_path ? subtypesof(path) : typesof(path) var/list/L = list() for(var/T in types) L[T] = TRUE return L else if(islist(path)) var/list/pathlist = path var/list/L = list() if(ignore_root_path) for(var/P in pathlist) for(var/T in subtypesof(P)) L[T] = TRUE else for(var/P in pathlist) if(only_root_path) L[P] = TRUE else for(var/T in typesof(P)) L[T] = TRUE return L /// Empties the list by setting the length to 0. Hopefully the elements get garbage collected /proc/clearlist(list/list) if(istype(list)) list.len = 0 return //Removes any null entries from the list //Returns TRUE if the list had nulls, FALSE otherwise /proc/listclearnulls(list/L) var/start_len = L.len var/list/N = new(start_len) L -= N return L.len < start_len /* * Returns list containing all the entries from first list that are not present in second. * If skiprep = 1, repeated elements are treated as one. * If either of arguments is not a list, returns null */ /proc/difflist(list/first, list/second, skiprep=0) if(!islist(first) || !islist(second)) return var/list/result = new if(skiprep) for(var/e in first) if(!(e in result) && !(e in second)) result += e else result = first - second return result /* * Returns list containing entries that are in either list but not both. * If skipref = 1, repeated elements are treated as one. * If either of arguments is not a list, returns null */ /proc/uniquemergelist(list/first, list/second, skiprep=0) if(!islist(first) || !islist(second)) return var/list/result = new if(skiprep) result = difflist(first, second, skiprep)+difflist(second, first, skiprep) else result = first ^ second return result //Picks a random element from a list based on a weighting system: //1. Adds up the total of weights for each element //2. Gets a number between 1 and that total //3. For each element in the list, subtracts its weighting from that number //4. If that makes the number 0 or less, return that element. /proc/pickweight(list/L) var/total = 0 var/item for (item in L) if (!L[item]) L[item] = 1 total += L[item] total *= rand() // Yogs -- Allows for noninteger weights for (item in L) total -=L [item] if (total <= 0) return item return null /proc/pickweightAllowZero(list/L) //The original pickweight proc will sometimes pick entries with zero weight. I'm not sure if changing the original will break anything, so I left it be. var/total = 0 var/item for (item in L) if (!L[item]) L[item] = 0 total += L[item] total = rand(0, total) for (item in L) total -=L [item] if (total <= 0 && L[item]) return item return null /// Takes a weighted list (see above) and expands it into raw entries /// This eats more memory, but saves time when actually picking from it /proc/expand_weights(list/list_to_pick) var/list/values = list() for(var/item in list_to_pick) var/value = list_to_pick[item] if(!value) continue values += value var/gcf = greatest_common_factor(values) var/list/output = list() for(var/item in list_to_pick) var/value = list_to_pick[item] if(!value) continue for(var/i in 1 to value / gcf) output += item return output /// Takes a list of numbers as input, returns the highest value that is cleanly divides them all /// Note: this implementation is expensive as heck for large numbers, I only use it because most of my usecase /// Is < 10 ints /proc/greatest_common_factor(list/values) var/smallest = min(arglist(values)) for(var/i in smallest to 1 step -1) var/safe = TRUE for(var/entry in values) if(entry % i != 0) safe = FALSE break if(safe) return i /// Pick a random element from the list and remove it from the list. /proc/pick_n_take(list/L) RETURN_TYPE(L[_].type) if(L.len) var/picked = rand(1,L.len) . = L[picked] L.Cut(picked,picked+1) //Cut is far more efficient that Remove() /// Returns the top(last) element from the list and removes it from the list (typical stack function) /proc/pop(list/L) if(L.len) . = L[L.len] L.len-- /// Returns the bottom(first) element from the list and removes it from the list (typical stack function) /proc/popleft(list/L) if(L.len) . = L[1] L.Cut(1,2) /proc/sorted_insert(list/L, thing, comparator) var/pos = L.len while(pos > 0 && call(comparator)(thing, L[pos]) > 0) pos-- L.Insert(pos+1, thing) /// Returns the next item in a list /proc/next_list_item(item, list/L) var/i i = L.Find(item) if(i == L.len) i = 1 else i++ return L[i] /// Returns the previous item in a list /proc/previous_list_item(item, list/L) var/i i = L.Find(item) if(i == 1) i = L.len else i-- return L[i] /// Randomize: Return the list in a random order /proc/shuffle(list/L) if(!L) return L = L.Copy() for(var/i=1, i= 0 ? /proc/cmp_ckey_asc : /proc/cmp_ckey_dsc) /// Sort datum records in a list /proc/sortRecord(list/L, field = "name", order = 1) GLOB.cmp_field = field return sortTim(L, order >= 0 ? /proc/cmp_records_asc : /proc/cmp_records_dsc) //any value in a list /proc/sortList(list/L, cmp=/proc/cmp_text_asc) return sortTim(L.Copy(), cmp) //uses sortList() but uses the var's name specifically. This should probably be using mergeAtom() instead /proc/sortNames(list/L, order=1) return sortTim(L, order >= 0 ? /proc/cmp_name_asc : /proc/cmp_name_dsc) /proc/sortUsernames(list/L, order=1) return sortTim(L, order >= 0 ? /proc/cmp_username_asc : /proc/cmp_username_dsc) /// Converts a bitfield to a list of numbers (or words if a wordlist is provided) /proc/bitfield2list(bitfield = 0, list/wordlist) var/list/r = list() if(islist(wordlist)) var/max = min(wordlist.len,16) var/bit = 1 for(var/i=1, i<=max, i++) if(bitfield & bit) r += wordlist[i] bit = bit << 1 else for(var/bit=1, bit<=65535, bit = bit << 1) if(bitfield & bit) r += bit return r //tg compat #define bitfield_to_list(args...) bitfield2list(args) /// Returns the key based on the index #define KEYBYINDEX(L, index) (((index <= length(L)) && (index > 0)) ? L[index] : null) /proc/count_by_type(list/L, type) var/i = 0 for(var/T in L) if(istype(T, type)) i++ return i /// Find a datum record from a list /proc/find_record(field, value, list/L) for(var/datum/data/record/R in L) if(R.fields[field] == value) return R return FALSE //Move a single element from position fromIndex within a list, to position toIndex //All elements in the range [1,toIndex) before the move will be before the pivot afterwards //All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards //In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages. //fromIndex and toIndex must be in the range [1,L.len+1] //This will preserve associations ~Carnie /proc/moveElement(list/L, fromIndex, toIndex) if(fromIndex == toIndex || fromIndex+1 == toIndex) //no need to move return if(fromIndex > toIndex) ++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one L.Insert(toIndex, null) L.Swap(fromIndex, toIndex) L.Cut(fromIndex, fromIndex+1) //Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex) //Same as moveElement but for ranges of elements //This will preserve associations ~Carnie /proc/moveRange(list/L, fromIndex, toIndex, len=1) var/distance = abs(toIndex - fromIndex) if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements if(fromIndex <= toIndex) return //no need to move fromIndex += len //we want to shift left instead of right for(var/i=0, i toIndex) fromIndex += len for(var/i=0, i distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements if(fromIndex < toIndex) toIndex += len else fromIndex += len for(var/i=0, i fromIndex) var/a = toIndex toIndex = fromIndex fromIndex = a for(var/i=0, i numeric value entries * All these procs modify in place. */ /proc/counterlist_scale(list/L, scalar) var/list/out = list() for(var/key in L) out[key] = L[key] * scalar . = out /proc/counterlist_sum(list/L) . = 0 for(var/key in L) . += L[key] /proc/counterlist_normalise(list/L) var/avg = counterlist_sum(L) if(avg != 0) . = counterlist_scale(L, 1 / avg) else . = L /proc/counterlist_combine(list/L1, list/L2) for(var/key in L2) var/other_value = L2[key] if(key in L1) L1[key] += other_value else L1[key] = other_value /// Turns an associative list into a flat list of keys /proc/assoc_to_keys(list/input) var/list/keys = list() for(var/key in input) keys += key return keys /proc/compare_list(list/l,list/d) if(!islist(l) || !islist(d)) return FALSE if(l.len != d.len) return FALSE for(var/i in 1 to l.len) if(l[i] != d[i]) return FALSE return TRUE