Files
Yogstation/code/__DEFINES/maths.dm
Ling f83723c389 Ports SSfoam and SSsmoke (#17742)
* Ports SSfoam and SSsmoke

* Remove dupe define
2023-02-08 00:52:57 +00:00

229 lines
8.2 KiB
Plaintext

// Credits to Nickr5 for the useful procs I've taken from his library resource.
// This file is quadruple wrapped for your pleasure
// (
#define NUM_E 2.71828183
#define PI 3.1416
#define INFINITY 1e31 //closer then enough
#define SHORT_REAL_LIMIT 16777216
//"fancy" math for calculating time in ms from tick_usage percentage and the length of ticks
//percent_of_tick_used * (ticklag * 100(to convert to ms)) / 100(percent ratio)
//collapsed to percent_of_tick_used * tick_lag
#define TICK_DELTA_TO_MS(percent_of_tick_used) ((percent_of_tick_used) * world.tick_lag)
#define TICK_USAGE_TO_MS(starting_tickusage) (TICK_DELTA_TO_MS(TICK_USAGE_REAL - starting_tickusage))
#define PERCENT(val) (round((val)*100, 0.1))
#define CLAMP01(x) (clamp(x, 0, 1))
//time of day but automatically adjusts to the server going into the next day within the same round.
//for when you need a reliable time number that doesn't depend on byond time.
#define REALTIMEOFDAY (world.timeofday + (MIDNIGHT_ROLLOVER * MIDNIGHT_ROLLOVER_CHECK))
#define MIDNIGHT_ROLLOVER_CHECK ( GLOB.rollovercheck_last_timeofday != world.timeofday ? update_midnight_rollover() : GLOB.midnight_rollovers )
/// Gets the sign of x, returns -1 if negative, 0 if 0, 1 if positive
#define SIGN(x) ( ((x) > 0) - ((x) < 0) )
#define CEILING(x, y) ( -round(-(x) / (y)) * (y) )
#define ROUND_UP(x) ( -round(-(x)))
// round() acts like floor(x, 1) by default but can't handle other values
#define FLOOR(x, y) ( round((x) / (y)) * (y) )
// Similar to clamp but the bottom rolls around to the top and vice versa. min is inclusive, max is exclusive
#define WRAP(val, min, max) ( min == max ? min : (val) - (round(((val) - (min))/((max) - (min))) * ((max) - (min))) )
/// Increments a value and wraps it if it exceeds some value. Can be used to circularly iterate through a list through `idx = WRAP_UP(idx, length_of_list)`.
#define WRAP_UP(val, max) (((val) % (max)) + 1)
// Real modulus that handles decimals
#define MODULUS(x, y) ( (x) - (y) * round((x) / (y)) )
// Cotangent
#define COT(x) (1 / tan(x))
// Secant
#define SEC(x) (1 / cos(x))
// Cosecant
#define CSC(x) (1 / sin(x))
#define ATAN2(x, y) ( !(x) && !(y) ? 0 : (y) >= 0 ? arccos((x) / sqrt((x)*(x) + (y)*(y))) : -arccos((x) / sqrt((x)*(x) + (y)*(y))) )
// Greatest Common Divisor - Euclid's algorithm
/proc/Gcd(a, b)
return b ? Gcd(b, (a) % (b)) : a
// Least Common Multiple
#define Lcm(a, b) (abs(a) / Gcd(a, b) * abs(b))
#define INVERSE(x) ( 1/(x) )
// Used for calculating the radioactive strength falloff
#define INVERSE_SQUARE(initial_strength,cur_distance,initial_distance) ( (initial_strength)*((initial_distance)**2/(cur_distance)**2) )
#define ISABOUTEQUAL(a, b, deviation) (deviation ? abs((a) - (b)) <= deviation : abs((a) - (b)) <= 0.1)
#define ISEVEN(x) (x % 2 == 0)
#define ISODD(x) (x % 2 != 0)
// Returns true if val is from min to max, inclusive.
#define ISINRANGE(val, min, max) (min <= val && val <= max)
// Same as above, exclusive.
#define ISINRANGE_EX(val, min, max) (min < val && val < max)
#define ISINTEGER(x) (round(x) == x)
#define ISMULTIPLE(x, y) ((x) % (y) == 0)
// Performs a linear interpolation between a and b.
// Note that amount=0 returns a, amount=1 returns b, and
// amount=0.5 returns the mean of a and b.
#define LERP(a, b, amount) ( amount ? ((a) + ((b) - (a)) * (amount)) : a )
// Returns the nth root of x.
#define ROOT(n, x) ((x) ** (1 / (n)))
/// Low-pass filter a value to smooth out high frequent peaks. This can be thought of as a moving average filter as well.
/// delta_time is how many seconds since we last ran this command. RC is the filter constant, high RC means more smoothing
/// See https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter for the maths
#define LPFILTER(memory, signal, delta_time, RC) (delta_time / (RC + delta_time)) * signal + (1 - delta_time / (RC + delta_time)) * memory
// The quadratic formula. Returns a list with the solutions, or an empty list
// if they are imaginary.
/proc/SolveQuadratic(a, b, c)
ASSERT(a)
. = list()
var/d = b*b - 4 * a * c
var/bottom = 2 * a
if(d < 0)
return
var/root = sqrt(d)
. += (-b + root) / bottom
if(!d)
return
. += (-b - root) / bottom
#define TODEGREES(radians) ((radians) * 57.2957795)
#define TORADIANS(degrees) ((degrees) * 0.0174532925)
// Will filter out extra rotations and negative rotations
// E.g: 540 becomes 180. -180 becomes 180.
#define SIMPLIFY_DEGREES(degrees) (MODULUS((degrees), 360))
#define GET_ANGLE_OF_INCIDENCE(face, input) (MODULUS((face) - (input), 360))
//Finds the shortest angle that angle A has to change to get to angle B. Aka, whether to move clock or counterclockwise.
/proc/closer_angle_difference(a, b)
if(!isnum(a) || !isnum(b))
return
a = SIMPLIFY_DEGREES(a)
b = SIMPLIFY_DEGREES(b)
var/inc = b - a
if(inc < 0)
inc += 360
var/dec = a - b
if(dec < 0)
dec += 360
. = inc > dec? -dec : inc
//A logarithm that converts an integer to a number scaled between 0 and 1.
//Currently, this is used for hydroponics-produce sprite transforming, but could be useful for other transform functions.
#define TRANSFORM_USING_VARIABLE(input, max) ( sin((90*(input))/(max))**2 )
//converts a uniform distributed random number into a normal distributed one
//since this method produces two random numbers, one is saved for subsequent calls
//(making the cost negligble for every second call)
//This will return +/- decimals, situated about mean with standard deviation stddev
//68% chance that the number is within 1stddev
//95% chance that the number is within 2stddev
//98% chance that the number is within 3stddev...etc
#define ACCURACY 10000
/proc/gaussian(mean, stddev)
var/static/gaussian_next
var/R1
var/R2
var/working
if(gaussian_next != null)
R1 = gaussian_next
gaussian_next = null
else
do
R1 = rand(-ACCURACY,ACCURACY)/ACCURACY
R2 = rand(-ACCURACY,ACCURACY)/ACCURACY
working = R1*R1 + R2*R2
while(working >= 1 || working==0)
working = sqrt(-2 * log(working) / working)
R1 *= working
gaussian_next = R2 * working
return (mean + stddev * R1)
#undef ACCURACY
/proc/get_turf_in_angle(angle, turf/starting, increments)
var/pixel_x = 0
var/pixel_y = 0
for(var/i in 1 to increments)
pixel_x += sin(angle)+16*sin(angle)*2
pixel_y += cos(angle)+16*cos(angle)*2
var/new_x = starting.x
var/new_y = starting.y
while(pixel_x > 16)
pixel_x -= 32
new_x++
while(pixel_x < -16)
pixel_x += 32
new_x--
while(pixel_y > 16)
pixel_y -= 32
new_y++
while(pixel_y < -16)
pixel_y += 32
new_y--
new_x = clamp(new_x, 0, world.maxx)
new_y = clamp(new_y, 0, world.maxy)
return locate(new_x, new_y, starting.z)
// Returns a list where [1] is all x values and [2] is all y values that overlap between the given pair of rectangles
/proc/get_overlap(x1, y1, x2, y2, x3, y3, x4, y4)
var/list/region_x1 = list()
var/list/region_y1 = list()
var/list/region_x2 = list()
var/list/region_y2 = list()
// These loops create loops filled with x/y values that the boundaries inhabit
// ex: list(5, 6, 7, 8, 9)
for(var/i in min(x1, x2) to max(x1, x2))
region_x1["[i]"] = TRUE
for(var/i in min(y1, y2) to max(y1, y2))
region_y1["[i]"] = TRUE
for(var/i in min(x3, x4) to max(x3, x4))
region_x2["[i]"] = TRUE
for(var/i in min(y3, y4) to max(y3, y4))
region_y2["[i]"] = TRUE
return list(region_x1 & region_x2, region_y1 & region_y2)
#define EXP_DISTRIBUTION(desired_mean) ( -(1/(1/desired_mean)) * log(rand(1, 1000) * 0.001) )
#define LORENTZ_DISTRIBUTION(x, s) ( s*tan(TODEGREES(PI*(rand()-0.5))) + x )
#define LORENTZ_CUMULATIVE_DISTRIBUTION(x, y, s) ( (1/PI)*TORADIANS(arctan((x-y)/s)) + 1/2 )
#define RULE_OF_THREE(a, b, x) ((a*x)/b)
/// Converts a probability/second chance to probability/delta_time chance
/// For example, if you want an event to happen with a 10% per second chance, but your proc only runs every 5 seconds, do `if(prob(100*DT_PROB_RATE(0.1, 5)))`
#define DT_PROB_RATE(prob_per_second, delta_time) (1 - (1 - prob_per_second) ** delta_time)
/// Like DT_PROB_RATE but easier to use, simply put `if(DT_PROB(10, 5))`
#define DT_PROB(prob_per_second_percent, delta_time) (prob(100*DT_PROB_RATE(prob_per_second_percent/100, delta_time)))
// )
/// The number of cells in a taxicab circle (rasterized diamond) of radius X.
#define DIAMOND_AREA(X) (1 + 2*(X)*((X)+1))