mirror of
https://github.com/yogstation13/Yogstation.git
synced 2025-02-26 09:04:50 +00:00
728 lines
21 KiB
Plaintext
728 lines
21 KiB
Plaintext
/*
|
|
* Holds procs to help with list operations
|
|
* Contains groups:
|
|
* Misc
|
|
* Sorting
|
|
*/
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
#define LAZYINITLIST(L) if (!L) L = list()
|
|
#define UNSETEMPTY(L) if (L && !length(L)) L = null
|
|
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!length(L)) { L = null; } }
|
|
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
|
|
#define LAZYOR(L, I) if(!L) { L = list(); } L |= I;
|
|
#define LAZYFIND(L, V) L ? L.Find(V) : 0
|
|
#define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= length(L) ? L[I] : null) : L[I]) : null)
|
|
#define LAZYSET(L, K, V) if(!L) { L = list(); } L[K] = V;
|
|
#define LAZYLEN(L) length(L)
|
|
///Accesses an associative list, returns null if nothing is found
|
|
#define LAZYACCESSASSOC(L, I, K) L ? L[I] ? L[I][K] ? L[I][K] : null : null : null
|
|
///Qdel every item in the list before setting the list to null
|
|
#define QDEL_LAZYLIST(L) for(var/I in L) qdel(I); L = null;
|
|
//These methods don't null the list
|
|
///Use LAZYLISTDUPLICATE instead if you want it to null with no entries
|
|
#define LAZYCOPY(L) (L ? L.Copy() : list() )
|
|
/// Consider LAZYNULL instead
|
|
#define LAZYCLEARLIST(L) if(L) L.Cut()
|
|
///Returns the list if it's actually a valid list, otherwise will initialize it
|
|
#define SANITIZE_LIST(L) ( islist(L) ? L : list() )
|
|
#define reverseList(L) reverseRange(L.Copy())
|
|
#define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += list(V);
|
|
#define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; }
|
|
|
|
/// Passed into BINARY_INSERT to compare keys
|
|
#define COMPARE_KEY __BIN_LIST[__BIN_MID]
|
|
/// Passed into BINARY_INSERT to compare values
|
|
#define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]]
|
|
|
|
/****
|
|
* Binary search sorted insert
|
|
* INPUT: Object to be inserted
|
|
* LIST: List to insert object into
|
|
* TYPECONT: The typepath of the contents of the list
|
|
* COMPARE: The object to compare against, usualy the same as INPUT
|
|
* COMPARISON: The variable on the objects to compare
|
|
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
|
|
*/
|
|
#define BINARY_INSERT(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
|
|
do {\
|
|
var/list/__BIN_LIST = LIST;\
|
|
var/__BIN_CTTL = length(__BIN_LIST);\
|
|
if(!__BIN_CTTL) {\
|
|
__BIN_LIST += INPUT;\
|
|
} else {\
|
|
var/__BIN_LEFT = 1;\
|
|
var/__BIN_RIGHT = __BIN_CTTL;\
|
|
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
var ##TYPECONT/__BIN_ITEM;\
|
|
while(__BIN_LEFT < __BIN_RIGHT) {\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\
|
|
__BIN_LEFT = __BIN_MID + 1;\
|
|
} else {\
|
|
__BIN_RIGHT = __BIN_MID;\
|
|
};\
|
|
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
};\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
__BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\
|
|
__BIN_LIST.Insert(__BIN_MID, INPUT);\
|
|
};\
|
|
} while(FALSE)
|
|
|
|
/**
|
|
* Custom binary search sorted insert utilising comparison procs instead of vars.
|
|
* INPUT: Object to be inserted
|
|
* LIST: List to insert object into
|
|
* TYPECONT: The typepath of the contents of the list
|
|
* COMPARE: The object to compare against, usualy the same as INPUT
|
|
* COMPARISON: The plaintext name of a proc on INPUT that takes a single argument to accept a single element from LIST and returns a positive, negative or zero number to perform a comparison.
|
|
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
|
|
*/
|
|
#define BINARY_INSERT_PROC_COMPARE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
|
|
do {\
|
|
var/list/__BIN_LIST = LIST;\
|
|
var/__BIN_CTTL = length(__BIN_LIST);\
|
|
if(!__BIN_CTTL) {\
|
|
__BIN_LIST += INPUT;\
|
|
} else {\
|
|
var/__BIN_LEFT = 1;\
|
|
var/__BIN_RIGHT = __BIN_CTTL;\
|
|
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
var ##TYPECONT/__BIN_ITEM;\
|
|
while(__BIN_LEFT < __BIN_RIGHT) {\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
if(__BIN_ITEM.##COMPARISON(COMPARE) <= 0) {\
|
|
__BIN_LEFT = __BIN_MID + 1;\
|
|
} else {\
|
|
__BIN_RIGHT = __BIN_MID;\
|
|
};\
|
|
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
};\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
__BIN_MID = __BIN_ITEM.##COMPARISON(COMPARE) > 0 ? __BIN_MID : __BIN_MID + 1;\
|
|
__BIN_LIST.Insert(__BIN_MID, INPUT);\
|
|
};\
|
|
} while(FALSE)
|
|
|
|
#define SORT_FIRST_INDEX(list) (list[1])
|
|
#define SORT_COMPARE_DIRECTLY(thing) (thing)
|
|
#define SORT_VAR_NO_TYPE(varname) var/varname
|
|
/****
|
|
* Even more custom binary search sorted insert, using defines instead of vars
|
|
* INPUT: Item to be inserted
|
|
* LIST: List to insert INPUT into
|
|
* TYPECONT: A define setting the var to the typepath of the contents of the list
|
|
* COMPARE: The item to compare against, usualy the same as INPUT
|
|
* COMPARISON: A define that takes an item to compare as input, and returns their comparable value
|
|
* COMPTYPE: How should the list be compared? Either COMPARE_KEY or COMPARE_VALUE.
|
|
*/
|
|
#define BINARY_INSERT_DEFINE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
|
|
do {\
|
|
var/list/__BIN_LIST = LIST;\
|
|
var/__BIN_CTTL = length(__BIN_LIST);\
|
|
if(!__BIN_CTTL) {\
|
|
__BIN_LIST += INPUT;\
|
|
} else {\
|
|
var/__BIN_LEFT = 1;\
|
|
var/__BIN_RIGHT = __BIN_CTTL;\
|
|
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
##TYPECONT(__BIN_ITEM);\
|
|
while(__BIN_LEFT < __BIN_RIGHT) {\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
if(##COMPARISON(__BIN_ITEM) <= ##COMPARISON(COMPARE)) {\
|
|
__BIN_LEFT = __BIN_MID + 1;\
|
|
} else {\
|
|
__BIN_RIGHT = __BIN_MID;\
|
|
};\
|
|
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
|
|
};\
|
|
__BIN_ITEM = COMPTYPE;\
|
|
__BIN_MID = ##COMPARISON(__BIN_ITEM) > ##COMPARISON(COMPARE) ? __BIN_MID : __BIN_MID + 1;\
|
|
__BIN_LIST.Insert(__BIN_MID, INPUT);\
|
|
};\
|
|
} while(FALSE)
|
|
|
|
/// Returns a list in plain english as a string
|
|
/proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
|
|
var/total = input.len
|
|
if (!total)
|
|
return "[nothing_text]"
|
|
else if (total == 1)
|
|
return "[input[1]]"
|
|
else if (total == 2)
|
|
return "[input[1]][and_text][input[2]]"
|
|
else
|
|
var/output = ""
|
|
var/index = 1
|
|
while (index < total)
|
|
if (index == total - 1)
|
|
comma_text = final_comma_text
|
|
|
|
output += "[input[index]][comma_text]"
|
|
index++
|
|
|
|
return "[output][and_text][input[index]]"
|
|
|
|
/// Returns list element or null. Should prevent "index out of bounds" error.
|
|
/proc/listgetindex(list/L, index)
|
|
if(LAZYLEN(L))
|
|
if(isnum(index) && ISINTEGER(index))
|
|
if(ISINRANGE(index,1,L.len))
|
|
return L[index]
|
|
else if(index in L)
|
|
return L[index]
|
|
return
|
|
|
|
/// Return either pick(list) or null if list is not of type /list or is empty
|
|
/proc/safepick(list/L)
|
|
if(LAZYLEN(L))
|
|
return pick(L)
|
|
|
|
/// Checks if the list is empty
|
|
/proc/isemptylist(list/L)
|
|
if(!L.len)
|
|
return TRUE
|
|
return FALSE
|
|
|
|
/// Checks for specific types in a list
|
|
/proc/is_type_in_list(atom/A, list/L)
|
|
if(!LAZYLEN(L) || !A)
|
|
return FALSE
|
|
for(var/type in L)
|
|
if(istype(A, type))
|
|
return TRUE
|
|
return FALSE
|
|
|
|
/// Checks for specific types in specifically structured (Assoc "type" = TRUE) lists ('typecaches')
|
|
#define is_type_in_typecache(A, L) (A && length(L) && L[(ispath(A) ? A : A:type)])
|
|
|
|
/// Checks for a string in a list
|
|
/proc/is_string_in_list(string, list/L)
|
|
if(!LAZYLEN(L) || !string)
|
|
return
|
|
for(var/V in L)
|
|
if(string == V)
|
|
return TRUE
|
|
return
|
|
|
|
/// Removes a string from a list
|
|
/proc/remove_strings_from_list(string, list/L)
|
|
if(!LAZYLEN(L) || !string)
|
|
return
|
|
for(var/V in L)
|
|
if(V == string)
|
|
L -= V //No return here so that it removes all strings of that type
|
|
return
|
|
|
|
/// returns a new list with only atoms that are in typecache L
|
|
/proc/typecache_filter_list(list/atoms, list/typecache)
|
|
RETURN_TYPE(/list)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if (typecache[A.type])
|
|
. += A
|
|
|
|
/// returns a new list with only atoms that are not in typecache L
|
|
/proc/typecache_filter_list_reverse(list/atoms, list/typecache)
|
|
RETURN_TYPE(/list)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if(!typecache[A.type])
|
|
. += A
|
|
|
|
/proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude)
|
|
. = list()
|
|
for(var/thing in atoms)
|
|
var/atom/A = thing
|
|
if(typecache_include[A.type] && !typecache_exclude[A.type])
|
|
. += A
|
|
|
|
/// Like typesof() or subtypesof(), but returns a typecache instead of a list
|
|
/proc/typecacheof(path, ignore_root_path, only_root_path = FALSE)
|
|
if(ispath(path))
|
|
var/list/types = list()
|
|
if(only_root_path)
|
|
types = list(path)
|
|
else
|
|
types = ignore_root_path ? subtypesof(path) : typesof(path)
|
|
var/list/L = list()
|
|
for(var/T in types)
|
|
L[T] = TRUE
|
|
return L
|
|
else if(islist(path))
|
|
var/list/pathlist = path
|
|
var/list/L = list()
|
|
if(ignore_root_path)
|
|
for(var/P in pathlist)
|
|
for(var/T in subtypesof(P))
|
|
L[T] = TRUE
|
|
else
|
|
for(var/P in pathlist)
|
|
if(only_root_path)
|
|
L[P] = TRUE
|
|
else
|
|
for(var/T in typesof(P))
|
|
L[T] = TRUE
|
|
return L
|
|
|
|
/// Empties the list by setting the length to 0. Hopefully the elements get garbage collected
|
|
/proc/clearlist(list/list)
|
|
if(istype(list))
|
|
list.len = 0
|
|
return
|
|
|
|
//Removes any null entries from the list
|
|
//Returns TRUE if the list had nulls, FALSE otherwise
|
|
/proc/listclearnulls(list/L)
|
|
var/start_len = L.len
|
|
var/list/N = new(start_len)
|
|
L -= N
|
|
return L.len < start_len
|
|
|
|
/*
|
|
* Returns list containing all the entries from first list that are not present in second.
|
|
* If skiprep = 1, repeated elements are treated as one.
|
|
* If either of arguments is not a list, returns null
|
|
*/
|
|
/proc/difflist(list/first, list/second, skiprep=0)
|
|
if(!islist(first) || !islist(second))
|
|
return
|
|
var/list/result = new
|
|
if(skiprep)
|
|
for(var/e in first)
|
|
if(!(e in result) && !(e in second))
|
|
result += e
|
|
else
|
|
result = first - second
|
|
return result
|
|
|
|
/*
|
|
* Returns list containing entries that are in either list but not both.
|
|
* If skipref = 1, repeated elements are treated as one.
|
|
* If either of arguments is not a list, returns null
|
|
*/
|
|
/proc/uniquemergelist(list/first, list/second, skiprep=0)
|
|
if(!islist(first) || !islist(second))
|
|
return
|
|
var/list/result = new
|
|
if(skiprep)
|
|
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
|
|
else
|
|
result = first ^ second
|
|
return result
|
|
|
|
//Picks a random element from a list based on a weighting system:
|
|
//1. Adds up the total of weights for each element
|
|
//2. Gets a number between 1 and that total
|
|
//3. For each element in the list, subtracts its weighting from that number
|
|
//4. If that makes the number 0 or less, return that element.
|
|
/proc/pickweight(list/L)
|
|
var/total = 0
|
|
var/item
|
|
for (item in L)
|
|
if (!L[item])
|
|
L[item] = 1
|
|
total += L[item]
|
|
|
|
total *= rand() // Yogs -- Allows for noninteger weights
|
|
for (item in L)
|
|
total -=L [item]
|
|
if (total <= 0)
|
|
return item
|
|
|
|
return null
|
|
|
|
/proc/pickweightAllowZero(list/L) //The original pickweight proc will sometimes pick entries with zero weight. I'm not sure if changing the original will break anything, so I left it be.
|
|
var/total = 0
|
|
var/item
|
|
for (item in L)
|
|
if (!L[item])
|
|
L[item] = 0
|
|
total += L[item]
|
|
|
|
total = rand(0, total)
|
|
for (item in L)
|
|
total -=L [item]
|
|
if (total <= 0 && L[item])
|
|
return item
|
|
|
|
return null
|
|
|
|
/// Takes a weighted list (see above) and expands it into raw entries
|
|
/// This eats more memory, but saves time when actually picking from it
|
|
/proc/expand_weights(list/list_to_pick)
|
|
var/list/values = list()
|
|
for(var/item in list_to_pick)
|
|
var/value = list_to_pick[item]
|
|
if(!value)
|
|
continue
|
|
values += value
|
|
|
|
var/gcf = greatest_common_factor(values)
|
|
|
|
var/list/output = list()
|
|
for(var/item in list_to_pick)
|
|
var/value = list_to_pick[item]
|
|
if(!value)
|
|
continue
|
|
for(var/i in 1 to value / gcf)
|
|
output += item
|
|
return output
|
|
|
|
/// Takes a list of numbers as input, returns the highest value that is cleanly divides them all
|
|
/// Note: this implementation is expensive as heck for large numbers, I only use it because most of my usecase
|
|
/// Is < 10 ints
|
|
/proc/greatest_common_factor(list/values)
|
|
var/smallest = min(arglist(values))
|
|
for(var/i in smallest to 1 step -1)
|
|
var/safe = TRUE
|
|
for(var/entry in values)
|
|
if(entry % i != 0)
|
|
safe = FALSE
|
|
break
|
|
if(safe)
|
|
return i
|
|
|
|
/// Pick a random element from the list and remove it from the list.
|
|
/proc/pick_n_take(list/L)
|
|
RETURN_TYPE(L[_].type)
|
|
if(L.len)
|
|
var/picked = rand(1,L.len)
|
|
. = L[picked]
|
|
L.Cut(picked,picked+1) //Cut is far more efficient that Remove()
|
|
|
|
/// Returns the top(last) element from the list and removes it from the list (typical stack function)
|
|
/proc/pop(list/L)
|
|
if(L.len)
|
|
. = L[L.len]
|
|
L.len--
|
|
|
|
/// Returns the bottom(first) element from the list and removes it from the list (typical stack function)
|
|
/proc/popleft(list/L)
|
|
if(L.len)
|
|
. = L[1]
|
|
L.Cut(1,2)
|
|
|
|
/proc/sorted_insert(list/L, thing, comparator)
|
|
var/pos = L.len
|
|
while(pos > 0 && call(comparator)(thing, L[pos]) > 0)
|
|
pos--
|
|
L.Insert(pos+1, thing)
|
|
|
|
/// Returns the next item in a list
|
|
/proc/next_list_item(item, list/L)
|
|
var/i
|
|
i = L.Find(item)
|
|
if(i == L.len)
|
|
i = 1
|
|
else
|
|
i++
|
|
return L[i]
|
|
|
|
/// Returns the previous item in a list
|
|
/proc/previous_list_item(item, list/L)
|
|
var/i
|
|
i = L.Find(item)
|
|
if(i == 1)
|
|
i = L.len
|
|
else
|
|
i--
|
|
return L[i]
|
|
|
|
/// Randomize: Return the list in a random order
|
|
/proc/shuffle(list/L)
|
|
if(!L)
|
|
return
|
|
L = L.Copy()
|
|
|
|
for(var/i=1, i<L.len, ++i)
|
|
L.Swap(i,rand(i,L.len))
|
|
|
|
return L
|
|
|
|
/// Same as shuffle, but returns nothing and acts on list in place
|
|
/proc/shuffle_inplace(list/L)
|
|
if(!L)
|
|
return
|
|
|
|
for(var/i=1, i<L.len, ++i)
|
|
L.Swap(i,rand(i,L.len))
|
|
|
|
/// Returns a list without duplicate entrys
|
|
/proc/uniqueList(list/L)
|
|
. = list()
|
|
for(var/i in L)
|
|
. |= i
|
|
|
|
//same, but returns nothing and acts on list in place (also handles associated values properly)
|
|
/proc/uniqueList_inplace(list/L)
|
|
var/temp = L.Copy()
|
|
L.len = 0
|
|
for(var/key in temp)
|
|
if (isnum(key))
|
|
L |= key
|
|
else
|
|
L[key] = temp[key]
|
|
|
|
/// Sort a list by CKEY
|
|
/proc/sortKey(list/L, order=1)
|
|
return sortTim(L, order >= 0 ? /proc/cmp_ckey_asc : /proc/cmp_ckey_dsc)
|
|
|
|
/// Sort datum records in a list
|
|
/proc/sortRecord(list/L, field = "name", order = 1)
|
|
GLOB.cmp_field = field
|
|
return sortTim(L, order >= 0 ? /proc/cmp_records_asc : /proc/cmp_records_dsc)
|
|
|
|
//any value in a list
|
|
/proc/sortList(list/L, cmp=/proc/cmp_text_asc)
|
|
return sortTim(L.Copy(), cmp)
|
|
|
|
//uses sortList() but uses the var's name specifically. This should probably be using mergeAtom() instead
|
|
/proc/sortNames(list/L, order=1)
|
|
return sortTim(L, order >= 0 ? /proc/cmp_name_asc : /proc/cmp_name_dsc)
|
|
|
|
/proc/sortUsernames(list/L, order=1)
|
|
return sortTim(L, order >= 0 ? /proc/cmp_username_asc : /proc/cmp_username_dsc)
|
|
|
|
/// Converts a bitfield to a list of numbers (or words if a wordlist is provided)
|
|
/proc/bitfield2list(bitfield = 0, list/wordlist)
|
|
var/list/r = list()
|
|
if(islist(wordlist))
|
|
var/max = min(wordlist.len,16)
|
|
var/bit = 1
|
|
for(var/i=1, i<=max, i++)
|
|
if(bitfield & bit)
|
|
r += wordlist[i]
|
|
bit = bit << 1
|
|
else
|
|
for(var/bit=1, bit<=65535, bit = bit << 1)
|
|
if(bitfield & bit)
|
|
r += bit
|
|
|
|
return r
|
|
|
|
//tg compat
|
|
#define bitfield_to_list(args...) bitfield2list(args)
|
|
|
|
/// Returns the key based on the index
|
|
#define KEYBYINDEX(L, index) (((index <= length(L)) && (index > 0)) ? L[index] : null)
|
|
|
|
/proc/count_by_type(list/L, type)
|
|
var/i = 0
|
|
for(var/T in L)
|
|
if(istype(T, type))
|
|
i++
|
|
return i
|
|
|
|
/// Find a datum record from a list
|
|
/proc/find_record(field, value, list/L)
|
|
for(var/datum/data/record/R in L)
|
|
if(R.fields[field] == value)
|
|
return R
|
|
return FALSE
|
|
|
|
|
|
//Move a single element from position fromIndex within a list, to position toIndex
|
|
//All elements in the range [1,toIndex) before the move will be before the pivot afterwards
|
|
//All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards
|
|
//In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages.
|
|
//fromIndex and toIndex must be in the range [1,L.len+1]
|
|
//This will preserve associations ~Carnie
|
|
/proc/moveElement(list/L, fromIndex, toIndex)
|
|
if(fromIndex == toIndex || fromIndex+1 == toIndex) //no need to move
|
|
return
|
|
if(fromIndex > toIndex)
|
|
++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one
|
|
|
|
L.Insert(toIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(fromIndex, fromIndex+1)
|
|
|
|
|
|
//Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex)
|
|
//Same as moveElement but for ranges of elements
|
|
//This will preserve associations ~Carnie
|
|
/proc/moveRange(list/L, fromIndex, toIndex, len=1)
|
|
var/distance = abs(toIndex - fromIndex)
|
|
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
|
|
if(fromIndex <= toIndex)
|
|
return //no need to move
|
|
fromIndex += len //we want to shift left instead of right
|
|
|
|
for(var/i=0, i<distance, ++i)
|
|
L.Insert(fromIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(toIndex, toIndex+1)
|
|
else
|
|
if(fromIndex > toIndex)
|
|
fromIndex += len
|
|
|
|
for(var/i=0, i<len, ++i)
|
|
L.Insert(toIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(fromIndex, fromIndex+1)
|
|
|
|
//Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len)
|
|
//Move any elements being overwritten by the move to the now-empty elements, preserving order
|
|
//Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
|
|
/proc/swapRange(list/L, fromIndex, toIndex, len=1)
|
|
var/distance = abs(toIndex - fromIndex)
|
|
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
|
|
if(fromIndex < toIndex)
|
|
toIndex += len
|
|
else
|
|
fromIndex += len
|
|
|
|
for(var/i=0, i<distance, ++i)
|
|
L.Insert(fromIndex, null)
|
|
L.Swap(fromIndex, toIndex)
|
|
L.Cut(toIndex, toIndex+1)
|
|
else
|
|
if(toIndex > fromIndex)
|
|
var/a = toIndex
|
|
toIndex = fromIndex
|
|
fromIndex = a
|
|
|
|
for(var/i=0, i<len, ++i)
|
|
L.Swap(fromIndex++, toIndex++)
|
|
|
|
//replaces reverseList ~Carnie
|
|
/proc/reverseRange(list/L, start=1, end=0)
|
|
if(L.len)
|
|
start = start % L.len
|
|
end = end % (L.len+1)
|
|
if(start <= 0)
|
|
start += L.len
|
|
if(end <= 0)
|
|
end += L.len + 1
|
|
|
|
--end
|
|
while(start < end)
|
|
L.Swap(start++,end--)
|
|
|
|
return L
|
|
|
|
// /tg/ compat
|
|
#define reverse_range(args...) reverseRange(args)
|
|
|
|
//return first thing in L which has var/varname == value
|
|
//this is typecaste as list/L, but you could actually feed it an atom instead.
|
|
//completely safe to use
|
|
/proc/getElementByVar(list/L, varname, value)
|
|
varname = "[varname]"
|
|
for(var/datum/D in L)
|
|
if(D.vars.Find(varname))
|
|
if(D.vars[varname] == value)
|
|
return D
|
|
|
|
/// remove all nulls from a list
|
|
/proc/removeNullsFromList(list/L)
|
|
while(L.Remove(null))
|
|
continue
|
|
return L
|
|
|
|
//Copies a list, and all lists inside it recusively
|
|
//Does not copy any other reference type
|
|
/proc/deepCopyList(list/l)
|
|
if(!islist(l))
|
|
return l
|
|
. = l.Copy()
|
|
for(var/i = 1 to l.len)
|
|
var/key = .[i]
|
|
if(isnum(key))
|
|
// numbers cannot ever be associative keys
|
|
continue
|
|
var/value = .[key]
|
|
if(islist(value))
|
|
value = deepCopyList(value)
|
|
.[key] = value
|
|
if(islist(key))
|
|
key = deepCopyList(key)
|
|
.[i] = key
|
|
.[key] = value
|
|
|
|
//takes an input_key, as text, and the list of keys already used, outputting a replacement key in the format of "[input_key] ([number_of_duplicates])" if it finds a duplicate
|
|
//use this for lists of things that might have the same name, like mobs or objects, that you plan on giving to a player as input
|
|
/proc/avoid_assoc_duplicate_keys(input_key, list/used_key_list)
|
|
if(!input_key || !istype(used_key_list))
|
|
return
|
|
if(used_key_list[input_key])
|
|
used_key_list[input_key]++
|
|
input_key = "[input_key] ([used_key_list[input_key]])"
|
|
else
|
|
used_key_list[input_key] = 1
|
|
return input_key
|
|
|
|
//Flattens a keyed list into a list of it's contents
|
|
/proc/flatten_list(list/key_list)
|
|
if(!islist(key_list))
|
|
return null
|
|
. = list()
|
|
for(var/key in key_list)
|
|
. |= key_list[key]
|
|
|
|
/proc/make_associative(list/flat_list)
|
|
. = list()
|
|
for(var/thing in flat_list)
|
|
.[thing] = TRUE
|
|
|
|
//Picks from the list, with some safeties, and returns the "default" arg if it fails
|
|
#define DEFAULTPICK(L, default) ((islist(L) && length(L)) ? pick(L) : default)
|
|
|
|
/* Definining a counter as a series of key -> numeric value entries
|
|
|
|
* All these procs modify in place.
|
|
*/
|
|
|
|
/proc/counterlist_scale(list/L, scalar)
|
|
var/list/out = list()
|
|
for(var/key in L)
|
|
out[key] = L[key] * scalar
|
|
. = out
|
|
|
|
/proc/counterlist_sum(list/L)
|
|
. = 0
|
|
for(var/key in L)
|
|
. += L[key]
|
|
|
|
/proc/counterlist_normalise(list/L)
|
|
var/avg = counterlist_sum(L)
|
|
if(avg != 0)
|
|
. = counterlist_scale(L, 1 / avg)
|
|
else
|
|
. = L
|
|
|
|
/proc/counterlist_combine(list/L1, list/L2)
|
|
for(var/key in L2)
|
|
var/other_value = L2[key]
|
|
if(key in L1)
|
|
L1[key] += other_value
|
|
else
|
|
L1[key] = other_value
|
|
|
|
/// Turns an associative list into a flat list of keys
|
|
/proc/assoc_to_keys(list/input)
|
|
var/list/keys = list()
|
|
for(var/key in input)
|
|
keys += key
|
|
return keys
|
|
|
|
/proc/compare_list(list/l,list/d)
|
|
if(!islist(l) || !islist(d))
|
|
return FALSE
|
|
|
|
if(l.len != d.len)
|
|
return FALSE
|
|
|
|
for(var/i in 1 to l.len)
|
|
if(l[i] != d[i])
|
|
return FALSE
|
|
|
|
return TRUE
|