Files
vgstation13/code/__HELPERS/lists.dm
13spacemen 300cf616f5 Lambo Bloody Item Overlays (#36395)
* bloody item overlays use mutable appearances instead of icon cache

* lazylists
2024-05-03 22:04:48 -05:00

539 lines
16 KiB
Plaintext

/*
* Holds procs to help with list operations
* Contains groups:
* Misc
* Sorting
*/
/*
* Misc
*/
///Initialize the lazylist
#define LAZYINITLIST(L) if (!L) { L = list(); }
///If the provided list is empty, set it to null
#define UNSETEMPTY(L) if (L && !length(L)) L = null
///Remove an item from the list, set the list to null if empty
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!length(L)) { L = null; } }
///Add an item to the list, if the list is null it will initialize it
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
//Returns a list in plain english as a string
/proc/english_list(var/list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
var/total = input.len
if (!total)
return "[nothing_text]"
else if (total == 1)
return "[input[1]]"
else if (total == 2)
return "[input[1]][and_text][input[2]]"
else
var/output = ""
var/index = 1
while (index < total)
if (index == total - 1)
comma_text = final_comma_text
output += "[input[index]][comma_text]"
index++
return "[output][and_text][input[index]]"
//Returns a counted list of atom names in plain english as a string
/proc/counted_english_list(var/list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
var/list/names = uniquenamelist(input) // First, get the items to list
var/uniquetotal = names.len // And the amount
var/namecount = 0 // Variable for how often an item occurs
var/currentName = "" // Current name worked with in loop
if (!uniquetotal) // If the list of names is empty
return "[nothing_text]" // Return "nothing"
else if (uniquetotal == 1) // If there is only one item
namecount = count_by_name(input, names[1]) // Count how many of this item occurs
currentName = namecount == 1 ? "\a [names[1]]" : "[names[1]]\s" // Make it say "an item" or "x items" if singular or plural
return "[namecount == 1 ? "" : namecount] [currentName]" // Return this
else // If more than one item
var/output = "" // Output string to work on
var/index = 1 // Loop index
while (index < uniquetotal) // While in loop
if (index == uniquetotal - 1) // If second to last element
comma_text = final_comma_text // Remove the comma
namecount = count_by_name(input, names[index]) // Count as before
currentName = namecount == 1 ? "\a [names[index]]" : "[names[index]]\s" // And make grammatically correct
output += "[namecount == 1 ? "" : namecount] [currentName][comma_text]" // And put together as before, with comma this time
index++ // Iterate
namecount = count_by_name(input, names[index]) // Count again on last one
currentName = namecount == 1 ? "\a [names[index]]" : "[names[index]]\s" // Singular or plural
return "[output][and_text][namecount == 1 ? "" : namecount] [currentName]" // Put "and" before very last item in list
//Returns list element or null. Should prevent "index out of bounds" error.
/proc/listgetindex(list/L, index)
if(istype(L))
if(isnum(index))
if(IsInRange(index,1,L.len))
return L[index]
else if(index in L)
return L[index]
return
//Return either pick(list) or null if list is not of type /list or is empty
/proc/safepick(list/L)
if(istype(L) && L.len)
return pick(L)
//Checks if the list is empty
/proc/isemptylist(list/L)
if(!L.len)
return 1
return 0
//Checks for specific types in a list
/proc/is_type_in_list(datum/A, list/L)
if(!L || !L.len || !A)
return 0
if(L[L[1]] != MAX_VALUE) //Is this already a generated typecache
if(isnull(L[L[1]])) //It's not a typecache, so now we'll check if its an associative list or not
generate_type_list_cache(L) //Convert it to an associative list format for speed in access
else //Else this is meant to be an associative list, we can't reformat it
for(var/type in L)
if(istype(A, type))
return 1
return 0
if(istype(A))
A = A.type //Convert everything to a type
return L[A]
/proc/generate_type_list_cache(L)
for(var/type in L)
for(var/T in typesof(type)) //Gather all possible typepaths into an associative list
L[T] = MAX_VALUE //Set them equal to the max value which is unlikely to collide with any other pregenerated value
//Removes returns a new list which only contains elements from the original list of a certain type
/proc/prune_list_to_type(list/L, datum/A, var/exclude_type = FALSE)
if(!L || !L.len || !A)
return list()
if(!ispath(A))
A = A.type
var/list/nu = L.Copy()
for(var/element in nu)
if(istype(element,A) == exclude_type)
nu -= element
return nu
//Empties the list by setting the length to 0. Hopefully the elements get garbage collected
/proc/clearlist(list/list)
if(istype(list))
list.len = 0
return
//Removes any null entries from the list
/proc/listclearnulls(list/L)
if(istype(L))
var/i=1
for(var/thing in L)
if(thing != null)
++i
continue
L.Cut(i,i+1)
/*
* Returns a choice from an input list.
* If only one thing is returned, just gives us that with no input list.
*/
/proc/filter_list_input(input_text, input_heading, var/list/matches)
if(!matches.len)
return
if(matches.len==1)
return matches[1]
else
var/chosen = input(input_text, input_heading, matches[1]) as null|anything in matches
if(!chosen)
return
return chosen
/*
* Returns list containing all the entries from first list that are not present in second.
* If skiprep = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/difflist(var/list/first, var/list/second, var/skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
for(var/e in first)
if(!(e in result) && !(e in second))
result += e
else
result = first - second
return result
/*
* Returns list containing entries that are in either list but not both.
* If skipref = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/uniquemergelist(var/list/first, var/list/second, var/skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
else
result = first ^ second
return result
//Returns a new list of only elements in both lists.
/proc/andlist(var/list/A, var/list/B)
return A & B
//Picks an element based on its weight
/proc/pickweight(list/L)
if(!L || !L.len)
return
var/total = 0
var/item
for (item in L)
if (isnull(L[item]))
L[item] = 1
total += L[item]
total = rand()*total
for (item in L)
total -=L [item]
if (total <= 0)
return item
return L[L.len]
//Pick a random element from the list and remove it from the list.
/proc/pick_n_take(list/L)
if(L.len)
var/picked = rand(1,L.len)
. = L[picked]
L.Cut(picked,picked+1) //Cut is far more efficient that Remove()
//Returns the top(last) element from the list and removes it from the list (typical stack function)
/proc/pop(list/L)
if(L.len)
. = L[L.len]
L.len--
//Shift/Unshift works on a FIFO system unlike pop/push working on FILO
//Returns the bottom(first) element from the list and removes it from the list
/proc/shift(list/L)
if(L.len)
. = L[1]
L.Cut(1,2)
//Puts an item at the beginning of the list
/proc/unshift(list/L, thing)
L.Insert(1,thing)
/proc/sorted_insert(list/L, thing, comparator)
var/pos = L.len
while(pos > 0 && call(comparator)(thing, L[pos]) > 0)
pos--
L.Insert(pos+1, thing)
// Returns the next item in a list
/proc/next_list_item(var/item, var/list/L)
var/i
i = L.Find(item)
if(i == L.len)
i = 1
else
i++
if(i < 1 || i > L.len)
warning("[__FILE__]L[__LINE__]: [i] is outside of bounds for list, ([L.len])")
return
return L[i]
// Returns the previous item in a list
/proc/previous_list_item(var/item, var/list/L)
var/i
i = L.Find(item)
if(i == 1)
i = L.len
else
i--
if(i < 1 || i > L.len)
warning("[__FILE__]L[__LINE__]: [i] is outside of bounds for list, ([L.len])")
return
return L[i]
/*
* Sorting
*/
/*
//Reverses the order of items in the list
/proc/reverselist(var/list/input)
var/list/output = list()
for(var/i = input.len; i >= 1; i--)
output += input[i]
return output
*/
//Randomize: Return the list in a random order
/proc/shuffle(var/list/L)
if(!L)
return
L = L.Copy()
for(var/i=1, i<=L.len, ++i)
L.Swap(i,rand(1,L.len))
return L
//Return a list with no duplicate entries
/proc/uniquelist(var/list/L)
var/list/K = list()
for(var/item in L)
if(!(item in K))
K += item
return K
//Return a list with no duplicate names
/proc/uniquenamelist(var/list/L)
var/list/K = list()
var/current_name = ""
var/atom/current_atom = null
for(var/item in L)
if(isatom(item) || ispath(item))
current_atom = item
current_name = ispath(item) ? initial(current_atom.name) : isatom(item) ? current_atom.name : item
if(!(current_name in K))
K += current_name
return K
//for sorting clients or mobs by ckey
/proc/sortKey(list/L, order=1)
return sortTim(L, order >= 0 ? /proc/cmp_ckey_asc : /proc/cmp_ckey_dsc)
//Specifically for record datums in a list.
/proc/sortRecord(list/L, field = "name", order = 1)
cmp_field = field
return sortTim(L, order >= 0 ? /proc/cmp_records_asc : /proc/cmp_records_dsc)
//any value in a list
/proc/sortList(var/list/L, cmp=/proc/cmp_text_asc)
return sortTim(L.Copy(), cmp)
//uses sortList() but uses the var's name specifically. This should probably be using mergeAtom() instead
/proc/sortNames(var/list/L, order=1)
return sortTim(L, order >= 0 ? /proc/cmp_name_asc : /proc/cmp_name_dsc)
//Converts a bitfield to a list of numbers (or words if a wordlist is provided)
/proc/bitfield2list(bitfield = 0, list/wordlist)
var/list/r = list()
if(istype(wordlist,/list))
var/max = min(wordlist.len,16)
var/bit = 1
for(var/i=1, i<=max, i++)
if(bitfield & bit)
r += wordlist[i]
bit = bit << 1
else
for(var/bit=1, bit<=65535, bit = bit << 1)
if(bitfield & bit)
r += bit
return r
// Returns the key based on the index
/proc/get_key_by_index(var/list/L, var/index)
var/i = 1
for(var/key in L)
if(index == i)
return key
i++
return null
// Returns the first key to match the specified element. This is intended for lists which are injective functions.
// Which is to say, two keys will not map to the same element.
/proc/get_key_by_element(var/list/L, var/element)
for(var/key in L)
if(L[key] == element)
return key
return null
//In an associative list, get only the elements and not the keys.
/proc/get_list_of_elements(var/list/L)
var/list/elements = list()
for(var/key in L)
elements += L[key]
return elements
//In an associative list, get only the keys and not the elements.
/proc/get_list_of_keys(var/list/L)
var/list/keys = list()
for(var/key in L)
keys += key
return keys
//In an associative list, return a sum of the elements.
/proc/get_sum_of_elements(var/list/L)
var/elements = 0
for(var/key in L)
elements += L[key]
return elements
/proc/count_by_type(var/list/L, type)
var/i = 0
for(var/T in L)
if(istype(T, type))
i++
return i
/proc/count_by_name(var/list/L, name)
var/i = 0
var/atom/current_atom = null
var/current_name = ""
for(var/T in L)
if(isatom(T) || ispath(T))
current_atom = T
current_name = ispath(T) ? initial(current_atom.name) : isatom(T) ? current_atom.name : T
if(current_name == name)
i++
return i
/proc/find_record(field, value, list/L)
for(var/datum/data/record/R in L)
if(R.fields[field] == value)
return R
//get total of nums in a list, ignores non-num values
//great with get_list_of_elements!
/proc/total_list(var/list/L)
var/total = 0
for(var/element in L)
if(!isnum(element))
continue
total += element
return total
//Move a single element from position fromIndex within a list, to position toIndex
//All elements in the range [1,toIndex) before the move will be before the pivot afterwards
//All elements in the range [toIndex, L.len+1) before the move will be after the pivot afterwards
//In other words, it's as if the range [fromIndex,toIndex) have been rotated using a <<< operation common to other languages.
//fromIndex and toIndex must be in the range [1,L.len+1]
//This will preserve associations ~Carnie
/proc/moveElement(list/L, fromIndex, toIndex)
if(fromIndex == toIndex || fromIndex+1 == toIndex) //no need to move
return
if(fromIndex > toIndex)
++fromIndex //since a null will be inserted before fromIndex, the index needs to be nudged right by one
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex+1)
//Move elements [fromIndex,fromIndex+len) to [toIndex-len, toIndex)
//Same as moveElement but for ranges of elements
//This will preserve associations ~Carnie
/proc/moveRange(list/L, fromIndex, toIndex, len=1)
var/distance = abs(toIndex - fromIndex)
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
if(fromIndex <= toIndex)
return //no need to move
fromIndex += len //we want to shift left instead of right
for(var/i=0, i<distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex+1)
else
if(fromIndex > toIndex)
fromIndex += len
for(var/i=0, i<len, ++i)
L.Insert(toIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(fromIndex, fromIndex+1)
//Move elements from [fromIndex, fromIndex+len) to [toIndex, toIndex+len)
//Move any elements being overwritten by the move to the now-empty elements, preserving order
//Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
/proc/swapRange(list/L, fromIndex, toIndex, len=1)
var/distance = abs(toIndex - fromIndex)
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
if(fromIndex < toIndex)
toIndex += len
else
fromIndex += len
for(var/i=0, i<distance, ++i)
L.Insert(fromIndex, null)
L.Swap(fromIndex, toIndex)
L.Cut(toIndex, toIndex+1)
else
if(toIndex > fromIndex)
var/a = toIndex
toIndex = fromIndex
fromIndex = a
for(var/i=0, i<len, ++i)
L.Swap(fromIndex++, toIndex++)
//replaces reverseList ~Carnie
/proc/reverseRange(list/L, start=1, end=0)
if(L.len)
start = start % L.len
end = end % (L.len+1)
if(start <= 0)
start += L.len
if(end <= 0)
end += L.len + 1
--end
while(start < end)
L.Swap(start++,end--)
return L
//creates every subtype of prototype (excluding prototype) and adds it to list L.
//if no list/L is provided, one is created.
/proc/init_subtypes(prototype, list/L)
if(!istype(L))
L = list()
for(var/path in subtypesof(prototype))
L += new path()
return L
//takes an input_key, as text, and the list of keys already used, outputting a replacement key in the format of "[input_key] ([number_of_duplicates])" if it finds a duplicate
//use this for lists of things that might have the same name, like mobs or objects, that you plan on giving to a player as input
/proc/avoid_assoc_duplicate_keys(input_key, list/used_key_list)
if(!input_key || !istype(used_key_list))
return
if(used_key_list[input_key])
used_key_list[input_key]++
input_key = "[input_key] ([used_key_list[input_key]])"
else
used_key_list[input_key] = 1
return input_key
//returns the maximum value of an associative list, assuming the values are numbers.
/proc/associative_max(list/L)
var/max
for(var/a in L)
if(max == null || L[a] > max) max = L[a]
return max
//Convert a list of paths into a list of object names
/proc/types_to_english_list(var/list/L)
var/list/names = list()
for(var/P in L)
if(!ispath(P))
continue
names += "\the [P:name]"
return english_list(names)