mirror of
https://github.com/vgstation-coders/vgstation13.git
synced 2025-12-10 18:32:03 +00:00
244 lines
5.8 KiB
Plaintext
244 lines
5.8 KiB
Plaintext
/**
|
|
* Credits to Nickr5 for the useful procs I've taken from his library resource.
|
|
*/
|
|
|
|
var/const/E = 2.71828183
|
|
var/const/Sqrt2 = 1.41421356
|
|
|
|
/* //All point fingers and laugh at this joke of a list, I even heard using sqrt() is faster than this list lookup, honk.
|
|
// List of square roots for the numbers 1-100.
|
|
var/list/sqrtTable = list(1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10)
|
|
*/
|
|
|
|
/proc/Atan2(x, y)
|
|
if (!x && !y)
|
|
return 0
|
|
|
|
var/invcos = arccos(x / sqrt(x * x + y * y))
|
|
return y >= 0 ? invcos : -invcos
|
|
|
|
proc/arctan(x)
|
|
var/y=arcsin(x/sqrt(1+x*x))
|
|
return y
|
|
|
|
/proc/Ceiling(x, y = 1)
|
|
. = -round(-x / y) * y
|
|
|
|
//Moved to macros.dm to reduce pure calling overhead, this was being called shitloads, like, most calls of all procs.
|
|
/*
|
|
/proc/Clamp(const/val, const/min, const/max)
|
|
if (val <= min)
|
|
return min
|
|
|
|
if (val >= max)
|
|
return max
|
|
|
|
return val
|
|
*/
|
|
|
|
// cotangent
|
|
/proc/Cot(x)
|
|
return 1 / Tan(x)
|
|
|
|
// cosecant
|
|
/proc/Csc(x)
|
|
return 1 / sin(x)
|
|
|
|
/proc/Default(a, b)
|
|
return a ? a : b
|
|
|
|
/proc/Floor(x = 0, y = 0)
|
|
if(x == 0)
|
|
return 0
|
|
if(y == 0)
|
|
return round(x)
|
|
|
|
if(x < y)
|
|
return 0
|
|
|
|
var/diff = round(x, y) //finds x to the nearest value of y
|
|
if(diff > x)
|
|
return x - (y - (diff - x)) //diff minus x is the inverse of what we want to remove, so we subtract from y - the base unit - and subtract the result
|
|
else
|
|
return diff //this is good enough
|
|
|
|
// Greatest Common Divisor - Euclid's algorithm
|
|
/proc/Gcd(a, b)
|
|
return b ? Gcd(b, a % b) : a
|
|
|
|
/proc/Inverse(x)
|
|
return 1 / x
|
|
|
|
/proc/IsAboutEqual(a, b, deviation = 0.1)
|
|
return abs(a - b) <= deviation
|
|
|
|
/proc/IsEven(x)
|
|
return x % 2 == 0
|
|
|
|
// Returns true if val is from min to max, inclusive.
|
|
/proc/IsInRange(val, min, max)
|
|
return min <= val && val <= max
|
|
|
|
/proc/IsInteger(x)
|
|
return Floor(x) == x
|
|
|
|
/proc/IsOdd(x)
|
|
return !IsEven(x)
|
|
|
|
/proc/IsMultiple(x, y)
|
|
return x % y == 0
|
|
|
|
// Least Common Multiple
|
|
/proc/Lcm(a, b)
|
|
return abs(a) / Gcd(a, b) * abs(b)
|
|
|
|
/**
|
|
* Generic lerp function.
|
|
*/
|
|
/proc/lerp(x, x0, x1, y0 = 0, y1 = 1)
|
|
return y0 + (y1 - y0)*(x - x0)/(x1 - x0)
|
|
|
|
/**
|
|
* Lerps x to a value between [a, b]. x must be in the range [0, 1].
|
|
* My undying gratitude goes out to wwjnc.
|
|
*
|
|
* Basically this returns the number corresponding to a certain
|
|
* percentage in a range. 0% would be a, 100% would be b, 50% would
|
|
* be halfways between a and b, and so on.
|
|
*
|
|
* Other methods of lerping might not yield the exact value of a or b
|
|
* when x = 0 or 1. This one guarantees that.
|
|
*
|
|
* Examples:
|
|
* - mix(0.0, 30, 60) = 30
|
|
* - mix(1.0, 30, 60) = 60
|
|
* - mix(0.5, 30, 60) = 45
|
|
* - mix(0.75, 30, 60) = 52.5
|
|
*/
|
|
/proc/mix(a, b, x)
|
|
return a*(1 - x) + b*x
|
|
|
|
/**
|
|
* Lerps x to a value between [0, 1]. x must be in the range [a, b].
|
|
*
|
|
* This is the counterpart to the mix() function. It returns the actual
|
|
* percentage x is at inside the [a, b] range.
|
|
*
|
|
* Note that this is theoretically equivalent to calling lerp(x, a, b)
|
|
* (y0 and y1 default to 0 and 1) but this one is slightly faster
|
|
* because Byond is too dumb to optimize procs with default values. It
|
|
* shouldn't matter which one you use (since there are no FP issues)
|
|
* but this one is more explicit as to what you're doing.
|
|
*
|
|
* @todo Find a better name for this. I can't into english.
|
|
* http://i.imgur.com/8Pu0x7M.png
|
|
*/
|
|
/proc/unmix(x, a, b, min = 0, max = 1)
|
|
if(a==b)
|
|
return 1
|
|
return Clamp( (b - x)/(b - a), min, max )
|
|
|
|
/proc/Mean(...)
|
|
var/values = 0
|
|
var/sum = 0
|
|
for(var/val in args)
|
|
values++
|
|
sum += val
|
|
return sum / values
|
|
|
|
|
|
/*
|
|
* Returns the nth root of x.
|
|
*/
|
|
/proc/Root(const/n, const/x)
|
|
return x ** (1 / n)
|
|
|
|
/*
|
|
* Secant.
|
|
*/
|
|
/proc/Sec(const/x)
|
|
return 1 / cos(x)
|
|
|
|
// The quadratic formula. Returns a list with the solutions, or an empty list
|
|
// if they are imaginary.
|
|
/proc/SolveQuadratic(a, b, c)
|
|
ASSERT(a)
|
|
. = list()
|
|
var/d = b*b - 4 * a * c
|
|
var/bottom = 2 * a
|
|
if(d < 0)
|
|
return
|
|
var/root = sqrt(d)
|
|
. += (-b + root) / bottom
|
|
if(!d)
|
|
return
|
|
. += (-b - root) / bottom
|
|
|
|
/*
|
|
* Tangent.
|
|
*/
|
|
/proc/Tan(const/x)
|
|
return sin(x) / cos(x)
|
|
|
|
/proc/ToDegrees(const/radians)
|
|
// 180 / Pi
|
|
return radians * 57.2957795
|
|
|
|
/proc/ToRadians(const/degrees)
|
|
// Pi / 180
|
|
return degrees * 0.0174532925
|
|
|
|
// min is inclusive, max is exclusive
|
|
/proc/Wrap(val, min, max)
|
|
var/d = max - min
|
|
var/t = Floor((val - min) / d)
|
|
return val - (t * d)
|
|
|
|
/*
|
|
* A very crude linear approximatiaon of pythagoras theorem.
|
|
*/
|
|
/proc/cheap_pythag(const/Ax, const/Ay)
|
|
var/dx = abs(Ax)
|
|
var/dy = abs(Ay)
|
|
|
|
if (dx >= dy)
|
|
return dx + (0.5 * dy) // The longest side add half the shortest side approximates the hypotenuse.
|
|
else
|
|
return dy + (0.5 * dx)
|
|
|
|
/*
|
|
* Magic constants obtained by using linear regression on right-angled triangles of sides 0<x<1, 0<y<1
|
|
* They should approximate pythagoras theorem well enough for our needs.
|
|
*/
|
|
#define k1 0.934
|
|
#define k2 0.427
|
|
/proc/cheap_hypotenuse(const/Ax, const/Ay, const/Bx, const/By)
|
|
var/dx = abs(Ax - Bx) // Sides of right-angled triangle.
|
|
var/dy = abs(Ay - By)
|
|
|
|
if (dx >= dy)
|
|
return (k1*dx) + (k2*dy) // No sqrt or powers :).
|
|
else
|
|
return (k2*dx) + (k1*dy)
|
|
#undef k1
|
|
#undef k2
|
|
|
|
//Checks if something's a power of 2, to check bitflags.
|
|
//Thanks to wwjnc for this.
|
|
/proc/test_bitflag(var/bitflag)
|
|
return bitflag != 0 && !(bitflag & (bitflag - 1))
|
|
|
|
/*
|
|
* Diminishing returns formula using a triangular number sequence.
|
|
* Taken from http://lostsouls.org/grimoire_diminishing_returns
|
|
*/
|
|
/proc/triangular_seq(input, scale)
|
|
if(input < 0)
|
|
return -triangular_seq(-input, scale)
|
|
var/mult = input/scale
|
|
var/trinum = (sqrt(8 * mult + 1) - 1 ) / 2
|
|
return trinum * scale
|