Files
Bubberstation/code/__HELPERS/_lists.dm
LemonInTheDark d34fa4c642 Macro optimizes SSmapping saving 50% (#69632)
* 'optimizes' space transitions by like 0.06 seconds, makes them easier to read tho, so that's an upside

* ''''optimizes'''' parsed map loading

I'm honestly not sure how big a difference this makes, looked like small
percentage points if anything
It's a bit more internally concistent at least, which is nice. Also I
understand the system now.

I'd like to think it helped but I think this is kinda a "do you think
it's easier to read" sort of situation. if it did help it was by the
skin of its teeth

* Saves 0.6 seconds off loading meta and lavaland's map files

This is just a lot of micro stuff.
1: Bound checks don't need to be inside for loops, we can instead bound the iteration counts
2: TGM and DMM are parsed differently. in dmm a grid_set is one z level,
   in tgm it's one collumn. Realizing this allows you to skip copytexts and
   other such silly in the tgm implemenentation, saving a good bit of time
3: Min/max bounds do not need to be checked inside for loops, and can
   instead be handled outside of them, because we know the order of x
   and y iteration. This saves 0.2 seconds

I may or may not have made the code harder to read, if so let me know
and I'll check it over.

* Micro ops key caching significantly. Fixes macros bug

inserting \ into a dmm with no valid target would just less then loop
the string. Dumb

Anyway, optimizations. I save a LOT of time by not needing to call
find_next_delimiter_position for every entry and var set. (like maybe 0.5
seconds, not totally sure)
I save this by using splittext, which is significantly faster. this
would cause parsing issues if you could embed \n into dmms, but you
can't, so I'm safe.

Lemme see uh, lots of little things, stuff that's suboptimal or could be
done cheaper. Some "hey you and I both know a \" is 2 chars long sort of
stuff

I removed trim_text because the quote trimming was never actually used,
and the space trimming was slower then using the code in trim. I also
micro'd trim to save a bit of time. this saves another maybe 0.5.

Few other things, I think that's the main of it. Gives me the fuzzy
feelings

* Saves 50% of build_coordinate's time

Micro optimizing go brrrrr
I made turf_blacklist an assoc list rather then just a normal one, so
lookups are O(log n) instead of O(n). Also it's faster for the base case
of loading mostly space.

Instead of toggling the map loader right before and right after New()
calls, we toggle at the start of mapload, and disable then reenable if
we check tick. This saves like 0.3 seconds

Rather then tracking an area cache ourselves, and needing to pass it
around, we use a locally static list to reference the global list of
area -> type. This is much faster, if slightly fragile.

Rather then checking for a null turf at every line, we do it at the
start of the proc and not after. Faster this way, tho it can in theory
drop area vvs.

Avoids calling world.preloader_setup unless we actually have a unique
set of attributes. We use another static list to make this comparison
cheap. This saves another 0.3

Rather then checking for area paths in the turf logic, or vis versa, we
assume we are creating the type implied by the index we're reading off.
So only the last type entry will be loaded like a turf, etc.
This is slightly unsafe but saves a good bit of time, and will properly
error on fucked maps.

Also, rather then using a datum to hold preloader vars, we use 2 global
variables. This is faster.

This marks the end of my optimizations for direct maploading. I've
reduced the cost of loading a map by more then 50% now. Get owned.

* Adds a define for maploading tick check

* makes shuttles load again, removes some of the hard limits I had on the reader for profiling

* Macro ops cave generation

Cave generation was insanely more expensive then it had any right to be.
Maybe 0.5 seconds was saved off not doing a range(12) for EVERY SPAWNED
MOB.
0.14 was saved off using expanded weighted lists (A new idea of mine)
This is useful because I can take a weighted list, and condense it into
weight * path count. This is more memory heavy, and costs more to
create, but is so much faster then the proc.

I also added a naive implementation of gcd to make this a bit less bad.
It's not great, but it'll do for this usecase.

Oh and I changed some ChangeTurfs into New()s. I'm still not entirely
sure what the core difference between the two is, but it seems to work
fine.
I believe it's safe because the turf below us hasn't init'd yet, there's
nothing to take from them. It's like 3 seconds faster too so I'll be sad
when it turns out I'm being dumb

* Micros river spawning

This uses the same sort of concepts as the last change, mostly New being
preferable to ChangeTurf at this level of code.
This bit isn't nearly as detailed as the last few, I honestly got a bit
tired. It's still like 0.4 seconds saved tho

* Micros ruin loading

Turns out it saves time if you don't check area type for every tile on a
ruin. Not a whole ton faster, like 0.03, but faster.

Saves even more time (0.1) to not iterate all your ruin's turfs 3 times
to clear away lavaland mobs, when you're IN SPACE who wrote this.

Oh it also saves time to only pull your turf list once, rather then 3
times
2022-09-22 15:34:10 -07:00

1052 lines
34 KiB
Plaintext

/*
* Holds procs to help with list operations
* Contains groups:
* Misc
* Sorting
*/
/*
* Misc
*/
///Initialize the lazylist
#define LAZYINITLIST(L) if (!L) { L = list(); }
///If the provided list is empty, set it to null
#define UNSETEMPTY(L) if (L && !length(L)) L = null
///If the provided key -> list is empty, remove it from the list
#define ASSOC_UNSETEMPTY(L, K) if (!length(L[K])) L -= K;
///Like LAZYCOPY - copies an input list if the list has entries, If it doesn't the assigned list is nulled
#define LAZYLISTDUPLICATE(L) (L ? L.Copy() : null )
///Remove an item from the list, set the list to null if empty
#define LAZYREMOVE(L, I) if(L) { L -= I; if(!length(L)) { L = null; } }
///Add an item to the list, if the list is null it will initialize it
#define LAZYADD(L, I) if(!L) { L = list(); } L += I;
///Add an item to the list if not already present, if the list is null it will initialize it
#define LAZYOR(L, I) if(!L) { L = list(); } L |= I;
///Returns the key of the submitted item in the list
#define LAZYFIND(L, V) (L ? L.Find(V) : 0)
///returns L[I] if L exists and I is a valid index of L, runtimes if L is not a list
#define LAZYACCESS(L, I) (L ? (isnum(I) ? (I > 0 && I <= length(L) ? L[I] : null) : L[I]) : null)
///Sets the item K to the value V, if the list is null it will initialize it
#define LAZYSET(L, K, V) if(!L) { L = list(); } L[K] = V;
///Sets the length of a lazylist
#define LAZYSETLEN(L, V) if (!L) { L = list(); } L.len = V;
///Returns the length of the list
#define LAZYLEN(L) length(L)
///Sets a list to null
#define LAZYNULL(L) L = null
///Adds to the item K the value V, if the list is null it will initialize it
#define LAZYADDASSOC(L, K, V) if(!L) { L = list(); } L[K] += V;
///This is used to add onto lazy assoc list when the value you're adding is a /list/. This one has extra safety over lazyaddassoc because the value could be null (and thus cant be used to += objects)
#define LAZYADDASSOCLIST(L, K, V) if(!L) { L = list(); } L[K] += list(V);
///Removes the value V from the item K, if the item K is empty will remove it from the list, if the list is empty will set the list to null
#define LAZYREMOVEASSOC(L, K, V) if(L) { if(L[K]) { L[K] -= V; if(!length(L[K])) L -= K; } if(!length(L)) L = null; }
///Accesses an associative list, returns null if nothing is found
#define LAZYACCESSASSOC(L, I, K) L ? L[I] ? L[I][K] ? L[I][K] : null : null : null
///Qdel every item in the list before setting the list to null
#define QDEL_LAZYLIST(L) for(var/I in L) qdel(I); L = null;
//These methods don't null the list
///Use LAZYLISTDUPLICATE instead if you want it to null with no entries
#define LAZYCOPY(L) (L ? L.Copy() : list() )
/// Consider LAZYNULL instead
#define LAZYCLEARLIST(L) if(L) L.Cut()
///Returns the list if it's actually a valid list, otherwise will initialize it
#define SANITIZE_LIST(L) ( islist(L) ? L : list() )
#define reverseList(L) reverse_range(L.Copy())
/// Performs an insertion on the given lazy list with the given key and value. If the value already exists, a new one will not be made.
#define LAZYORASSOCLIST(lazy_list, key, value) \
LAZYINITLIST(lazy_list); \
LAZYINITLIST(lazy_list[key]); \
lazy_list[key] |= value;
/// Passed into BINARY_INSERT to compare keys
#define COMPARE_KEY __BIN_LIST[__BIN_MID]
/// Passed into BINARY_INSERT to compare values
#define COMPARE_VALUE __BIN_LIST[__BIN_LIST[__BIN_MID]]
/****
* Binary search sorted insert
* INPUT: Object to be inserted
* LIST: List to insert object into
* TYPECONT: The typepath of the contents of the list
* COMPARE: The object to compare against, usualy the same as INPUT
* COMPARISON: The variable on the objects to compare
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var ##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(__BIN_ITEM.##COMPARISON <= COMPARE.##COMPARISON) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = __BIN_ITEM.##COMPARISON > COMPARE.##COMPARISON ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
/**
* Custom binary search sorted insert utilising comparison procs instead of vars.
* INPUT: Object to be inserted
* LIST: List to insert object into
* TYPECONT: The typepath of the contents of the list
* COMPARE: The object to compare against, usualy the same as INPUT
* COMPARISON: The plaintext name of a proc on INPUT that takes a single argument to accept a single element from LIST and returns a positive, negative or zero number to perform a comparison.
* COMPTYPE: How should the values be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT_PROC_COMPARE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
var ##TYPECONT/__BIN_ITEM;\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(__BIN_ITEM.##COMPARISON(COMPARE) <= 0) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = __BIN_ITEM.##COMPARISON(COMPARE) > 0 ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
#define SORT_FIRST_INDEX(list) (list[1])
#define SORT_COMPARE_DIRECTLY(thing) (thing)
#define SORT_VAR_NO_TYPE(varname) var/varname
/****
* Even more custom binary search sorted insert, using defines instead of vars
* INPUT: Item to be inserted
* LIST: List to insert INPUT into
* TYPECONT: A define setting the var to the typepath of the contents of the list
* COMPARE: The item to compare against, usualy the same as INPUT
* COMPARISON: A define that takes an item to compare as input, and returns their comparable value
* COMPTYPE: How should the list be compared? Either COMPARE_KEY or COMPARE_VALUE.
*/
#define BINARY_INSERT_DEFINE(INPUT, LIST, TYPECONT, COMPARE, COMPARISON, COMPTYPE) \
do {\
var/list/__BIN_LIST = LIST;\
var/__BIN_CTTL = length(__BIN_LIST);\
if(!__BIN_CTTL) {\
__BIN_LIST += INPUT;\
} else {\
var/__BIN_LEFT = 1;\
var/__BIN_RIGHT = __BIN_CTTL;\
var/__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
##TYPECONT(__BIN_ITEM);\
while(__BIN_LEFT < __BIN_RIGHT) {\
__BIN_ITEM = COMPTYPE;\
if(##COMPARISON(__BIN_ITEM) <= ##COMPARISON(COMPARE)) {\
__BIN_LEFT = __BIN_MID + 1;\
} else {\
__BIN_RIGHT = __BIN_MID;\
};\
__BIN_MID = (__BIN_LEFT + __BIN_RIGHT) >> 1;\
};\
__BIN_ITEM = COMPTYPE;\
__BIN_MID = ##COMPARISON(__BIN_ITEM) > ##COMPARISON(COMPARE) ? __BIN_MID : __BIN_MID + 1;\
__BIN_LIST.Insert(__BIN_MID, INPUT);\
};\
} while(FALSE)
///Returns a list in plain english as a string
/proc/english_list(list/input, nothing_text = "nothing", and_text = " and ", comma_text = ", ", final_comma_text = "" )
var/total = length(input)
switch(total)
if (0)
return "[nothing_text]"
if (1)
return "[input[1]]"
if (2)
return "[input[1]][and_text][input[2]]"
else
var/output = ""
var/index = 1
while (index < total)
if (index == total - 1)
comma_text = final_comma_text
output += "[input[index]][comma_text]"
index++
return "[output][and_text][input[index]]"
/**
* Checks for specific types in a list.
*
* If using zebra mode the list should be an assoc list with truthy/falsey values.
* The check short circuits so earlier entries in the input list will take priority.
* Ergo, subtypes should come before parent types.
* Notice that this is the opposite priority of [/proc/typecacheof].
*
* Arguments:
* - [type_to_check][/datum]: An instance to check.
* - [list_to_check][/list]: A list of typepaths to check the type_to_check against.
* - zebra: Whether to use the value of the matching type in the list instead of just returning true when a match is found.
*/
/proc/is_type_in_list(datum/type_to_check, list/list_to_check, zebra = FALSE)
if(!LAZYLEN(list_to_check) || !type_to_check)
return FALSE
for(var/type in list_to_check)
if(istype(type_to_check, type))
return !zebra || list_to_check[type] // Subtypes must come first in zebra lists.
return FALSE
/**
* Checks for specific paths in a list.
*
* If using zebra mode the list should be an assoc list with truthy/falsey values.
* The check short circuits so earlier entries in the input list will take priority.
* Ergo, subpaths should come before parent paths.
* Notice that this is the opposite priority of [/proc/typecacheof].
*
* Arguments:
* - path_to_check: A typepath to check.
* - [list_to_check][/list]: A list of typepaths to check the path_to_check against.
* - zebra: Whether to use the value of the mathing path in the list instead of just returning true when a match is found.
*/
/proc/is_path_in_list(path_to_check, list/list_to_check, zebra = FALSE)
if(!LAZYLEN(list_to_check) || !path_to_check)
return FALSE
for(var/path in list_to_check)
if(ispath(path_to_check, path))
return !zebra || list_to_check[path]
return FALSE
///Checks for specific types in specifically structured (Assoc "type" = TRUE|FALSE) lists ('typecaches')
#define is_type_in_typecache(A, L) (A && length(L) && L[(ispath(A) ? A : A:type)])
///returns a new list with only atoms that are in the typecache list
/proc/typecache_filter_list(list/atoms, list/typecache)
RETURN_TYPE(/list)
. = list()
for(var/atom/atom_checked as anything in atoms)
if (typecache[atom_checked.type])
. += atom_checked
///return a new list with atoms that are not in the typecache list
/proc/typecache_filter_list_reverse(list/atoms, list/typecache)
RETURN_TYPE(/list)
. = list()
for(var/atom/atom_checked as anything in atoms)
if(!typecache[atom_checked.type])
. += atom_checked
///similar to typecache_filter_list and typecache_filter_list_reverse but it supports an inclusion list and and exclusion list
/proc/typecache_filter_multi_list_exclusion(list/atoms, list/typecache_include, list/typecache_exclude)
. = list()
for(var/atom/atom_checked as anything in atoms)
if(typecache_include[atom_checked.type] && !typecache_exclude[atom_checked.type])
. += atom_checked
/**
* Like typesof() or subtypesof(), but returns a typecache instead of a list.
*
* Arguments:
* - path: A typepath or list of typepaths.
* - only_root_path: Whether the typecache should be specifically of the passed types.
* - ignore_root_path: Whether to ignore the root path when caching subtypes.
*/
/proc/typecacheof(path, only_root_path = FALSE, ignore_root_path = FALSE)
if(isnull(path))
return
if(ispath(path))
. = list()
if(only_root_path)
.[path] = TRUE
return
for(var/subtype in (ignore_root_path ? subtypesof(path) : typesof(path)))
.[subtype] = TRUE
return
if(!islist(path))
CRASH("Tried to create a typecache of [path] which is neither a typepath nor a list.")
. = list()
var/list/pathlist = path
if(only_root_path)
for(var/current_path in pathlist)
.[current_path] = TRUE
else if(ignore_root_path)
for(var/current_path in pathlist)
for(var/subtype in subtypesof(current_path))
.[subtype] = TRUE
else
for(var/current_path in pathlist)
for(var/subpath in typesof(current_path))
.[subpath] = TRUE
/**
* Like typesof() or subtypesof(), but returns a typecache instead of a list.
* This time it also uses the associated values given by the input list for the values of the subtypes.
*
* Latter values from the input list override earlier values.
* Thus subtypes should come _after_ parent types in the input list.
* Notice that this is the opposite priority of [/proc/is_type_in_list] and [/proc/is_path_in_list].
*
* Arguments:
* - path: A typepath or list of typepaths with associated values.
* - single_value: The assoc value used if only a single path is passed as the first variable.
* - only_root_path: Whether the typecache should be specifically of the passed types.
* - ignore_root_path: Whether to ignore the root path when caching subtypes.
* - clear_nulls: Whether to remove keys with null assoc values from the typecache after generating it.
*/
/proc/zebra_typecacheof(path, single_value = TRUE, only_root_path = FALSE, ignore_root_path = FALSE, clear_nulls = FALSE)
if(isnull(path))
return
if(ispath(path))
if (isnull(single_value))
return
. = list()
if(only_root_path)
.[path] = single_value
return
for(var/subtype in (ignore_root_path ? subtypesof(path) : typesof(path)))
.[subtype] = single_value
return
if(!islist(path))
CRASH("Tried to create a typecache of [path] which is neither a typepath nor a list.")
. = list()
var/list/pathlist = path
if(only_root_path)
for(var/current_path in pathlist)
.[current_path] = pathlist[current_path]
else if(ignore_root_path)
for(var/current_path in pathlist)
for(var/subtype in subtypesof(current_path))
.[subtype] = pathlist[current_path]
else
for(var/current_path in pathlist)
for(var/subpath in typesof(current_path))
.[subpath] = pathlist[current_path]
if(!clear_nulls)
return
for(var/cached_path in .)
if (isnull(.[cached_path]))
. -= cached_path
/**
* Removes any null entries from the list
* Returns TRUE if the list had nulls, FALSE otherwise
**/
/proc/list_clear_nulls(list/list_to_clear)
var/start_len = list_to_clear.len
var/list/new_list = new(start_len)
list_to_clear -= new_list
return list_to_clear.len < start_len
/*
* Returns list containing all the entries from first list that are not present in second.
* If skiprep = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/difflist(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
for(var/e in first)
if(!(e in result) && !(e in second))
result += e
else
result = first - second
return result
/*
* Returns list containing entries that are in either list but not both.
* If skipref = 1, repeated elements are treated as one.
* If either of arguments is not a list, returns null
*/
/proc/unique_merge_list(list/first, list/second, skiprep=0)
if(!islist(first) || !islist(second))
return
var/list/result = new
if(skiprep)
result = difflist(first, second, skiprep)+difflist(second, first, skiprep)
else
result = first ^ second
return result
/**
* Picks a random element from a list based on a weighting system.
* For example, given the following list:
* A = 6, B = 3, C = 1, D = 0
* A would have a 60% chance of being picked,
* B would have a 30% chance of being picked,
* C would have a 10% chance of being picked,
* and D would have a 0% chance of being picked.
* You should only pass integers in.
*/
/proc/pick_weight(list/list_to_pick)
var/total = 0
var/item
for(item in list_to_pick)
if(!list_to_pick[item])
list_to_pick[item] = 0
total += list_to_pick[item]
total = rand(0, total)
for(item in list_to_pick)
total -= list_to_pick[item]
if(total <= 0 && list_to_pick[item])
return item
return null
/// Takes a weighted list (see above) and expands it into raw entries
/// This eats more memory, but saves time when actually picking from it
/proc/expand_weights(list/list_to_pick)
var/list/values = list()
for(var/item in list_to_pick)
var/value = list_to_pick[item]
if(!value)
continue
values += value
var/gcf = greatest_common_factor(values)
var/list/output = list()
for(var/item in list_to_pick)
var/value = list_to_pick[item]
if(!value)
continue
for(var/i in 1 to value / gcf)
output += item
return output
/// Takes a list of numbers as input, returns the highest value that is cleanly divides them all
/// Note: this implementation is expensive as heck for large numbers, I only use it because most of my usecase
/// Is < 10 ints
/proc/greatest_common_factor(list/values)
var/smallest = min(arglist(values))
for(var/i in smallest to 1 step -1)
var/safe = TRUE
for(var/entry in values)
if(entry % i != 0)
safe = FALSE
break
if(safe)
return i
/// Pick a random element from the list and remove it from the list.
/proc/pick_n_take(list/list_to_pick)
RETURN_TYPE(list_to_pick[_].type)
if(list_to_pick.len)
var/picked = rand(1,list_to_pick.len)
. = list_to_pick[picked]
list_to_pick.Cut(picked,picked+1) //Cut is far more efficient that Remove()
///Returns the top(last) element from the list and removes it from the list (typical stack function)
/proc/pop(list/L)
if(L.len)
. = L[L.len]
L.len--
/// Returns the top (last) element from the list, does not remove it from the list. Stack functionality.
/proc/peek(list/target_list)
var/list_length = length(target_list)
if(list_length != 0)
return target_list[list_length]
/proc/popleft(list/L)
if(L.len)
. = L[1]
L.Cut(1,2)
/proc/sorted_insert(list/L, thing, comparator)
var/pos = L.len
while(pos > 0 && call(comparator)(thing, L[pos]) > 0)
pos--
L.Insert(pos+1, thing)
/// Returns the next item in a list
/proc/next_list_item(item, list/inserted_list)
var/i
i = inserted_list.Find(item)
if(i == inserted_list.len)
i = 1
else
i++
return inserted_list[i]
/// Returns the previous item in a list
/proc/previous_list_item(item, list/inserted_list)
var/i
i = inserted_list.Find(item)
if(i == 1)
i = inserted_list.len
else
i--
return inserted_list[i]
///Randomize: Return the list in a random order
/proc/shuffle(list/inserted_list)
if(!inserted_list)
return
inserted_list = inserted_list.Copy()
for(var/i in 1 to inserted_list.len - 1)
inserted_list.Swap(i, rand(i, inserted_list.len))
return inserted_list
///same as shuffle, but returns nothing and acts on list in place
/proc/shuffle_inplace(list/inserted_list)
if(!inserted_list)
return
for(var/i in 1 to inserted_list.len - 1)
inserted_list.Swap(i, rand(i, inserted_list.len))
///Return a list with no duplicate entries
/proc/unique_list(list/inserted_list)
. = list()
for(var/i in inserted_list)
. |= i
///same as unique_list, but returns nothing and acts on list in place (also handles associated values properly)
/proc/unique_list_in_place(list/inserted_list)
var/temp = inserted_list.Copy()
inserted_list.len = 0
for(var/key in temp)
if (isnum(key))
inserted_list |= key
else
inserted_list[key] = temp[key]
///for sorting clients or mobs by ckey
/proc/sort_key(list/ckey_list, order=1)
return sortTim(ckey_list, order >= 0 ? /proc/cmp_ckey_asc : /proc/cmp_ckey_dsc)
///Specifically for record datums in a list.
/proc/sort_record(list/record_list, field = "name", order = 1)
GLOB.cmp_field = field
return sortTim(record_list, order >= 0 ? /proc/cmp_records_asc : /proc/cmp_records_dsc)
///sort any value in a list
/proc/sort_list(list/list_to_sort, cmp=/proc/cmp_text_asc)
return sortTim(list_to_sort.Copy(), cmp)
///uses sort_list() but uses the var's name specifically. This should probably be using mergeAtom() instead
/proc/sort_names(list/list_to_sort, order=1)
return sortTim(list_to_sort.Copy(), order >= 0 ? /proc/cmp_name_asc : /proc/cmp_name_dsc)
///Converts a bitfield to a list of numbers (or words if a wordlist is provided)
/proc/bitfield_to_list(bitfield = 0, list/wordlist)
var/list/return_list = list()
if(islist(wordlist))
var/max = min(wordlist.len, 24)
var/bit = 1
for(var/i in 1 to max)
if(bitfield & bit)
return_list += wordlist[i]
bit = bit << 1
else
for(var/bit_number = 0 to 23)
var/bit = 1 << bit_number
if(bitfield & bit)
return_list += bit
return return_list
/// Returns the key based on the index
#define KEYBYINDEX(L, index) (((index <= length(L)) && (index > 0)) ? L[index] : null)
///return the amount of items of the same type inside a list
/proc/count_by_type(list/inserted_list, type)
var/i = 0
for(var/item_type in inserted_list)
if(istype(item_type, type))
i++
return i
/// Returns datum/data/record
/proc/find_record(field, value, list/inserted_list)
for(var/datum/data/record/record_to_check in inserted_list)
if(record_to_check.fields[field] == value)
return record_to_check
return null
/**
* Move a single element from position from_index within a list, to position to_index
* All elements in the range [1,to_index) before the move will be before the pivot afterwards
* All elements in the range [to_index, L.len+1) before the move will be after the pivot afterwards
* In other words, it's as if the range [from_index,to_index) have been rotated using a <<< operation common to other languages.
* from_index and to_index must be in the range [1,L.len+1]
* This will preserve associations ~Carnie
**/
/proc/move_element(list/inserted_list, from_index, to_index)
if(from_index == to_index || from_index + 1 == to_index) //no need to move
return
if(from_index > to_index)
++from_index //since a null will be inserted before from_index, the index needs to be nudged right by one
inserted_list.Insert(to_index, null)
inserted_list.Swap(from_index, to_index)
inserted_list.Cut(from_index, from_index + 1)
/**
* Move elements [from_index,from_index+len) to [to_index-len, to_index)
* Same as moveElement but for ranges of elements
* This will preserve associations ~Carnie
**/
/proc/move_range(list/inserted_list, from_index, to_index, len = 1)
var/distance = abs(to_index - from_index)
if(len >= distance) //there are more elements to be moved than the distance to be moved. Therefore the same result can be achieved (with fewer operations) by moving elements between where we are and where we are going. The result being, our range we are moving is shifted left or right by dist elements
if(from_index <= to_index)
return //no need to move
from_index += len //we want to shift left instead of right
for(var/i in 1 to distance)
inserted_list.Insert(from_index, null)
inserted_list.Swap(from_index, to_index)
inserted_list.Cut(to_index, to_index + 1)
else
if(from_index > to_index)
from_index += len
for(var/i in 1 to len)
inserted_list.Insert(to_index, null)
inserted_list.Swap(from_index, to_index)
inserted_list.Cut(from_index, from_index + 1)
///Move elements from [from_index, from_index+len) to [to_index, to_index+len)
///Move any elements being overwritten by the move to the now-empty elements, preserving order
///Note: if the two ranges overlap, only the destination order will be preserved fully, since some elements will be within both ranges ~Carnie
/proc/swap_range(list/inserted_list, from_index, to_index, len=1)
var/distance = abs(to_index - from_index)
if(len > distance) //there is an overlap, therefore swapping each element will require more swaps than inserting new elements
if(from_index < to_index)
to_index += len
else
from_index += len
for(var/i in 1 to distance)
inserted_list.Insert(from_index, null)
inserted_list.Swap(from_index, to_index)
inserted_list.Cut(to_index, to_index + 1)
else
if(to_index > from_index)
var/a = to_index
to_index = from_index
from_index = a
for(var/i in 1 to len)
inserted_list.Swap(from_index++, to_index++)
///replaces reverseList ~Carnie
/proc/reverse_range(list/inserted_list, start = 1, end = 0)
if(inserted_list.len)
start = start % inserted_list.len
end = end % (inserted_list.len + 1)
if(start <= 0)
start += inserted_list.len
if(end <= 0)
end += inserted_list.len + 1
--end
while(start < end)
inserted_list.Swap(start++, end--)
return inserted_list
///return first thing in L which has var/varname == value
///this is typecaste as list/L, but you could actually feed it an atom instead.
///completely safe to use
/proc/get_element_by_var(list/inserted_list, varname, value)
varname = "[varname]"
for(var/datum/checked_datum in inserted_list)
if(!checked_datum.vars.Find(varname))
continue
if(checked_datum.vars[varname] == value)
return checked_datum
///remove all nulls from a list
/proc/remove_nulls_from_list(list/inserted_list)
while(inserted_list.Remove(null))
continue
return inserted_list
///Copies a list, and all lists inside it recusively
///Does not copy any other reference type
/proc/deep_copy_list(list/inserted_list)
if(!islist(inserted_list))
return inserted_list
. = inserted_list.Copy()
for(var/i in 1 to inserted_list.len)
var/key = .[i]
if(isnum(key))
// numbers cannot ever be associative keys
continue
var/value = .[key]
if(islist(value))
value = deep_copy_list(value)
.[key] = value
if(islist(key))
key = deep_copy_list(key)
.[i] = key
.[key] = value
///takes an input_key, as text, and the list of keys already used, outputting a replacement key in the format of "[input_key] ([number_of_duplicates])" if it finds a duplicate
///use this for lists of things that might have the same name, like mobs or objects, that you plan on giving to a player as input
/proc/avoid_assoc_duplicate_keys(input_key, list/used_key_list)
if(!input_key || !istype(used_key_list))
return
if(used_key_list[input_key])
used_key_list[input_key]++
input_key = "[input_key] ([used_key_list[input_key]])"
else
used_key_list[input_key] = 1
return input_key
///Flattens a keyed list into a list of it's contents
/proc/flatten_list(list/key_list)
if(!islist(key_list))
return null
. = list()
for(var/key in key_list)
. |= key_list[key]
///Make a normal list an associative one
/proc/make_associative(list/flat_list)
. = list()
for(var/thing in flat_list)
.[thing] = TRUE
///Picks from the list, with some safeties, and returns the "default" arg if it fails
#define DEFAULTPICK(L, default) ((islist(L) && length(L)) ? pick(L) : default)
/* Definining a counter as a series of key -> numeric value entries
* All these procs modify in place.
*/
/proc/counterlist_scale(list/L, scalar)
var/list/out = list()
for(var/key in L)
out[key] = L[key] * scalar
. = out
/proc/counterlist_sum(list/L)
. = 0
for(var/key in L)
. += L[key]
/proc/counterlist_normalise(list/L)
var/avg = counterlist_sum(L)
if(avg != 0)
. = counterlist_scale(L, 1 / avg)
else
. = L
/proc/counterlist_combine(list/L1, list/L2)
for(var/key in L2)
var/other_value = L2[key]
if(key in L1)
L1[key] += other_value
else
L1[key] = other_value
/// Turns an associative list into a flat list of keys
/proc/assoc_to_keys(list/input)
var/list/keys = list()
for(var/key in input)
keys += key
return keys
///compare two lists, returns TRUE if they are the same
/proc/compare_list(list/l,list/d)
if(!islist(l) || !islist(d))
return FALSE
if(l.len != d.len)
return FALSE
for(var/i in 1 to l.len)
if(l[i] != d[i])
return FALSE
return TRUE
#define LAZY_LISTS_OR(left_list, right_list)\
( length(left_list)\
? length(right_list)\
? (left_list | right_list)\
: left_list.Copy()\
: length(right_list)\
? right_list.Copy()\
: null\
)
///Returns a list with items filtered from a list that can call callback
/proc/special_list_filter(list/list_to_filter, datum/callback/condition)
if(!islist(list_to_filter) || !length(list_to_filter) || !istype(condition))
return list()
. = list()
for(var/i in list_to_filter)
if(condition.Invoke(i))
. |= i
///Returns a list with all weakrefs resolved
/proc/recursive_list_resolve(list/list_to_resolve)
. = list()
for(var/element in list_to_resolve)
if(istext(element))
. += element
var/possible_assoc_value = list_to_resolve[element]
if(possible_assoc_value)
.[element] = recursive_list_resolve_element(possible_assoc_value)
else
. += list(recursive_list_resolve_element(element))
///Helper for /proc/recursive_list_resolve
/proc/recursive_list_resolve_element(element)
if(islist(element))
var/list/inner_list = element
return recursive_list_resolve(inner_list)
else if(isweakref(element))
var/datum/weakref/ref = element
return ref.resolve()
else
return element
/// Returns a copy of the list where any element that is a datum or the world is converted into a ref
/proc/refify_list(list/target_list, list/visited, path_accumulator = "list")
if(!visited)
visited = list()
var/list/ret = list()
visited[target_list] = path_accumulator
for(var/i in 1 to target_list.len)
var/key = target_list[i]
var/new_key = key
if(isweakref(key))
var/datum/weakref/ref = key
var/resolved = ref.resolve()
if(resolved)
new_key = "[resolved] [REF(resolved)]"
else
new_key = "null weakref [REF(key)]"
else if(isdatum(key))
new_key = "[key] [REF(key)]"
else if(key == world)
new_key = "world [REF(world)]"
else if(islist(key))
if(visited.Find(key))
new_key = visited[key]
else
new_key = refify_list(key, visited, path_accumulator + "\[[i]\]")
var/value
if(istext(key) || islist(key) || ispath(key) || isdatum(key) || key == world)
value = target_list[key]
if(isweakref(value))
var/datum/weakref/ref = value
var/resolved = ref.resolve()
if(resolved)
value = "[resolved] [REF(resolved)]"
else
value = "null weakref [REF(key)]"
else if(isdatum(value))
value = "[value] [REF(value)]"
else if(value == world)
value = "world [REF(world)]"
else if(islist(value))
if(visited.Find(value))
value = visited[value]
else
value = refify_list(value, visited, path_accumulator + "\[[key]\]")
var/list/to_add = list(new_key)
if(value)
to_add[new_key] = value
ret += to_add
if(i < target_list.len)
CHECK_TICK
return ret
/**
* Converts a list into a list of assoc lists of the form ("key" = key, "value" = value)
* so that list keys that are themselves lists can be fully json-encoded
*/
/proc/kvpify_list(list/target_list, depth = INFINITY, list/visited, path_accumulator = "list")
if(!visited)
visited = list()
var/list/ret = list()
visited[target_list] = path_accumulator
for(var/i in 1 to target_list.len)
var/key = target_list[i]
var/new_key = key
if(islist(key) && depth)
if(visited.Find(key))
new_key = visited[key]
else
new_key = kvpify_list(key, depth-1, visited, path_accumulator + "\[[i]\]")
var/value
if(istext(key) || islist(key) || ispath(key) || isdatum(key) || key == world)
value = target_list[key]
if(islist(value) && depth)
if(visited.Find(value))
value = visited[value]
else
value = kvpify_list(value, depth-1, visited, path_accumulator + "\[[key]\]")
if(value)
ret += list(list("key" = new_key, "value" = value))
else
ret += list(list("key" = i, "value" = new_key))
if(i < target_list.len)
CHECK_TICK
return ret
/// Compares 2 lists, returns TRUE if they are the same
/proc/deep_compare_list(list/list_1, list/list_2)
if(!islist(list_1) || !islist(list_2))
return FALSE
if(list_1 == list_2)
return TRUE
if(list_1.len != list_2.len)
return FALSE
for(var/i in 1 to list_1.len)
var/key_1 = list_1[i]
var/key_2 = list_2[i]
if (islist(key_1) && islist(key_2))
if(!deep_compare_list(key_1, key_2))
return FALSE
else if(key_1 != key_2)
return FALSE
if(istext(key_1) || islist(key_1) || ispath(key_1) || isdatum(key_1) || key_1 == world)
var/value_1 = list_1[key_1]
var/value_2 = list_2[key_1]
if (islist(value_1) && islist(value_2))
if(!deep_compare_list(value_1, value_2))
return FALSE
else if(value_1 != value_2)
return FALSE
return TRUE
/// Returns a copy of the list where any element that is a datum is converted into a weakref
/proc/weakrefify_list(list/target_list, list/visited, path_accumulator = "list")
if(!visited)
visited = list()
var/list/ret = list()
visited[target_list] = path_accumulator
for(var/i in 1 to target_list.len)
var/key = target_list[i]
var/new_key = key
if(isdatum(key))
new_key = WEAKREF(key)
else if(islist(key))
if(visited.Find(key))
new_key = visited[key]
else
new_key = weakrefify_list(key, visited, path_accumulator + "\[[i]\]")
var/value
if(istext(key) || islist(key) || ispath(key) || isdatum(key) || key == world)
value = target_list[key]
if(isdatum(value))
value = WEAKREF(value)
else if(islist(value))
if(visited.Find(value))
value = visited[value]
else
value = weakrefify_list(value, visited, path_accumulator + "\[[key]\]")
var/list/to_add = list(new_key)
if(value)
to_add[new_key] = value
ret += to_add
if(i < target_list.len)
CHECK_TICK
return ret
/// Returns a copy of a list where text values (except assoc-keys and string representations of lua-only values) are
/// wrapped in quotes and existing quote marks are escaped,
/// and nulls are replaced with the string "null"
/proc/encode_text_and_nulls(list/target_list, list/visited)
var/static/regex/lua_reference_regex
if(!lua_reference_regex)
lua_reference_regex = regex(@"^((function)|(table)|(thread)|(userdata)): 0x[0-9a-fA-F]+$")
if(!visited)
visited = list()
var/list/ret = list()
visited[target_list] = TRUE
for(var/i in 1 to target_list.len)
var/key = target_list[i]
var/new_key = key
if(istext(key) && !target_list[key] && !lua_reference_regex.Find(key))
new_key = "\"[replacetext(key, "\"", "\\\"")]\""
else if(islist(key))
var/found_index = visited.Find(key)
if(found_index)
new_key = visited[found_index]
else
new_key = encode_text_and_nulls(key, visited)
else if(isnull(key))
new_key = "null"
var/value
if(istext(key) || islist(key) || ispath(key) || isdatum(key) || key == world)
value = target_list[key]
if(istext(value) && !lua_reference_regex.Find(value))
value = "\"[replacetext(value, "\"", "\\\"")]\""
else if(islist(value))
var/found_index = visited.Find(value)
if(found_index)
value = visited[found_index]
else
value = encode_text_and_nulls(value, visited)
var/list/to_add = list(new_key)
if(value)
to_add[new_key] = value
ret += to_add
if(i < target_list.len)
CHECK_TICK
return ret
/// Runtimes if the passed in list is not sorted
/proc/assert_sorted(list/list, name, cmp = /proc/cmp_numeric_asc)
var/last_value = list[1]
for (var/index in 2 to list.len)
var/value = list[index]
if (call(cmp)(value, last_value) < 0)
stack_trace("[name] is not sorted. value at [index] ([value]) is in the wrong place compared to the previous value of [last_value] (when compared to by [cmp])")
last_value = value