mirror of
https://github.com/Bubberstation/Bubberstation.git
synced 2025-12-14 19:51:59 +00:00
* Fixes projectiles facing north if ricocheting, deflected or homing (#85216) ## About The Pull Request It **turns** out that `TurnTo` doesn't re**turn** `Turn`, but the angle (number, not matrix) it's **turn**ed to (used nowhere in the code), and `transform` is built-in variable that default to an identity matrix if set to an invalid value (anything but another matrix) The only thing keeping the projectiles facing the right direction when fired up to one of the aforementioned situations was another `Turn` call (not `turnTo`) called on `projectile/fire`, which I apparently didn't fully grasp the redundancy of (if there were no such issue to begin with) at the time. This PR also cleans up and rearranges the related code a little, including a fallback that was never reached because the projectile `Angle` variable is never null (unless something theorically fucky wucky happens with projectile code but that'd be an even bigger issue). ## Why It's Good For The Game Fixing an old issue caused by the author of this PR in #80599, me. ## Changelog 🆑 fix: Fixes projectiles facing north if ricocheting, deflected or homing /🆑 * Fixes projectiles facing north if ricocheting, deflected or homing --------- Co-authored-by: Ghom <42542238+Ghommie@users.noreply.github.com>
224 lines
7.1 KiB
Plaintext
224 lines
7.1 KiB
Plaintext
//Luma coefficients suggested for HDTVs. If you change these, make sure they add up to 1.
|
|
#define LUMA_R 0.213
|
|
#define LUMA_G 0.715
|
|
#define LUMA_B 0.072
|
|
|
|
/// Datum which stores information about a matrix decomposed with decompose().
|
|
/datum/decompose_matrix
|
|
///?
|
|
var/scale_x = 1
|
|
///?
|
|
var/scale_y = 1
|
|
///?
|
|
var/rotation = 0
|
|
///?
|
|
var/shift_x = 0
|
|
///?
|
|
var/shift_y = 0
|
|
|
|
/// Decomposes a matrix into scale, shift and rotation.
|
|
///
|
|
/// If other operations were applied on the matrix, such as shearing, the result
|
|
/// will not be precise.
|
|
///
|
|
/// Negative scales are now supported. =)
|
|
/matrix/proc/decompose()
|
|
var/datum/decompose_matrix/decompose_matrix = new
|
|
. = decompose_matrix
|
|
var/flip_sign = (a*e - b*d < 0)? -1 : 1 // Det < 0 => only 1 axis is flipped - start doing some sign flipping
|
|
// If both axis are flipped, nothing bad happens and Det >= 0, it just treats it like a 180° rotation
|
|
// If only 1 axis is flipped, we need to flip one direction - in this case X, so we flip a, b and the x scaling
|
|
decompose_matrix.scale_x = sqrt(a * a + d * d) * flip_sign
|
|
decompose_matrix.scale_y = sqrt(b * b + e * e)
|
|
decompose_matrix.shift_x = c
|
|
decompose_matrix.shift_y = f
|
|
if(!decompose_matrix.scale_x || !decompose_matrix.scale_y)
|
|
return
|
|
// If only translated, scaled and rotated, a/xs == e/ys and -d/xs == b/xy
|
|
var/cossine = (a/decompose_matrix.scale_x + e/decompose_matrix.scale_y) / 2
|
|
var/sine = (b/decompose_matrix.scale_y - d/decompose_matrix.scale_x) / 2 * flip_sign
|
|
decompose_matrix.rotation = arctan(cossine, sine) * flip_sign
|
|
|
|
/matrix/proc/TurnTo(old_angle, new_angle)
|
|
return Turn(new_angle - old_angle) //BYOND handles cases such as -270, 360, 540 etc. DOES NOT HANDLE 180 TURNS WELL, THEY TWEEN AND LOOK LIKE SHIT
|
|
|
|
/**
|
|
* Shear the transform on either or both axes.
|
|
* * x - X axis shearing
|
|
* * y - Y axis shearing
|
|
*/
|
|
/matrix/proc/Shear(x, y)
|
|
return Multiply(matrix(1, x, 0, y, 1, 0))
|
|
|
|
//Dumps the matrix data in format a-f
|
|
/matrix/proc/tolist()
|
|
. = list()
|
|
. += a
|
|
. += b
|
|
. += c
|
|
. += d
|
|
. += e
|
|
. += f
|
|
|
|
//Dumps the matrix data in a matrix-grid format
|
|
/*
|
|
a d 0
|
|
b e 0
|
|
c f 1
|
|
*/
|
|
/matrix/proc/togrid()
|
|
. = list()
|
|
. += a
|
|
. += d
|
|
. += 0
|
|
. += b
|
|
. += e
|
|
. += 0
|
|
. += c
|
|
. += f
|
|
. += 1
|
|
|
|
///The X pixel offset of this matrix
|
|
/matrix/proc/get_x_shift()
|
|
. = c
|
|
|
|
///The Y pixel offset of this matrix
|
|
/matrix/proc/get_y_shift()
|
|
. = f
|
|
|
|
/////////////////////
|
|
// COLOUR MATRICES //
|
|
/////////////////////
|
|
|
|
/* Documenting a couple of potentially useful color matrices here to inspire ideas
|
|
// Greyscale - indentical to saturation @ 0
|
|
list(LUMA_R,LUMA_R,LUMA_R,0, LUMA_G,LUMA_G,LUMA_G,0, LUMA_B,LUMA_B,LUMA_B,0, 0,0,0,1, 0,0,0,0)
|
|
|
|
// Color inversion
|
|
list(-1,0,0,0, 0,-1,0,0, 0,0,-1,0, 0,0,0,1, 1,1,1,0)
|
|
|
|
// Sepiatone
|
|
list(0.393,0.349,0.272,0, 0.769,0.686,0.534,0, 0.189,0.168,0.131,0, 0,0,0,1, 0,0,0,0)
|
|
*/
|
|
|
|
//Changes distance hues have from grey while maintaining the overall lightness. Greys are unaffected.
|
|
//1 is identity, 0 is greyscale, >1 oversaturates colors
|
|
/proc/color_matrix_saturation(value)
|
|
var/inv = 1 - value
|
|
var/R = round(LUMA_R * inv, 0.001)
|
|
var/G = round(LUMA_G * inv, 0.001)
|
|
var/B = round(LUMA_B * inv, 0.001)
|
|
|
|
return list(R + value,R,R,0, G,G + value,G,0, B,B,B + value,0, 0,0,0,1, 0,0,0,0)
|
|
|
|
//Moves all colors angle degrees around the color wheel while maintaining intensity of the color and not affecting greys
|
|
//0 is identity, 120 moves reds to greens, 240 moves reds to blues
|
|
/proc/color_matrix_rotate_hue(angle)
|
|
var/sin = sin(angle)
|
|
var/cos = cos(angle)
|
|
var/cos_inv_third = 0.333*(1-cos)
|
|
var/sqrt3_sin = sqrt(3)*sin
|
|
return list(
|
|
round(cos+cos_inv_third, 0.001), round(cos_inv_third+sqrt3_sin, 0.001), round(cos_inv_third-sqrt3_sin, 0.001), 0,
|
|
round(cos_inv_third-sqrt3_sin, 0.001), round(cos+cos_inv_third, 0.001), round(cos_inv_third+sqrt3_sin, 0.001), 0,
|
|
round(cos_inv_third+sqrt3_sin, 0.001), round(cos_inv_third-sqrt3_sin, 0.001), round(cos+cos_inv_third, 0.001), 0,
|
|
0,0,0,1,
|
|
0,0,0,0)
|
|
|
|
//These next three rotate values about one axis only
|
|
//x is the red axis, y is the green axis, z is the blue axis.
|
|
/proc/color_matrix_rotate_x(angle)
|
|
var/sinval = round(sin(angle), 0.001); var/cosval = round(cos(angle), 0.001)
|
|
return list(1,0,0,0, 0,cosval,sinval,0, 0,-sinval,cosval,0, 0,0,0,1, 0,0,0,0)
|
|
|
|
/proc/color_matrix_rotate_y(angle)
|
|
var/sinval = round(sin(angle), 0.001); var/cosval = round(cos(angle), 0.001)
|
|
return list(cosval,0,-sinval,0, 0,1,0,0, sinval,0,cosval,0, 0,0,0,1, 0,0,0,0)
|
|
|
|
/proc/color_matrix_rotate_z(angle)
|
|
var/sinval = round(sin(angle), 0.001); var/cosval = round(cos(angle), 0.001)
|
|
return list(cosval,sinval,0,0, -sinval,cosval,0,0, 0,0,1,0, 0,0,0,1, 0,0,0,0)
|
|
|
|
|
|
//Returns a matrix addition of A with B
|
|
/proc/color_matrix_add(list/A, list/B)
|
|
if(!istype(A) || !istype(B))
|
|
return COLOR_MATRIX_IDENTITY
|
|
if(A.len != 20 || B.len != 20)
|
|
return COLOR_MATRIX_IDENTITY
|
|
var/list/output = list()
|
|
output.len = 20
|
|
for(var/value in 1 to 20)
|
|
output[value] = A[value] + B[value]
|
|
return output
|
|
|
|
//Returns a matrix multiplication of A with B
|
|
/proc/color_matrix_multiply(list/A, list/B)
|
|
if(!istype(A) || !istype(B))
|
|
return COLOR_MATRIX_IDENTITY
|
|
if(A.len != 20 || B.len != 20)
|
|
return COLOR_MATRIX_IDENTITY
|
|
var/list/output = list()
|
|
output.len = 20
|
|
var/x = 1
|
|
var/y = 1
|
|
var/offset = 0
|
|
for(y in 1 to 5)
|
|
offset = (y-1)*4
|
|
for(x in 1 to 4)
|
|
output[offset+x] = round(A[offset+1]*B[x] + A[offset+2]*B[x+4] + A[offset+3]*B[x+8] + A[offset+4]*B[x+12]+(y == 5?B[x+16]:0), 0.001)
|
|
return output
|
|
|
|
/**
|
|
* Converts RGB shorthands into RGBA matrices complete of constants rows (ergo a 20 keys list in byond).
|
|
* if return_identity_on_fail is true, stack_trace is called instead of CRASH, and an identity is returned.
|
|
*/
|
|
/proc/color_to_full_rgba_matrix(color, return_identity_on_fail = TRUE)
|
|
if(!color)
|
|
return COLOR_MATRIX_IDENTITY
|
|
if(istext(color))
|
|
var/list/L = rgb2num(color)
|
|
if(!L)
|
|
var/message = "Invalid/unsupported color ([color]) argument in color_to_full_rgba_matrix()"
|
|
if(return_identity_on_fail)
|
|
stack_trace(message)
|
|
return COLOR_MATRIX_IDENTITY
|
|
CRASH(message)
|
|
return list(L[1]/255,0,0,0, 0,L[2]/255,0,0, 0,0,L[3]/255,0, 0,0,0,L.len>3?L[4]/255:1, 0,0,0,0)
|
|
if(!islist(color)) //invalid format
|
|
CRASH("Invalid/unsupported color ([color]) argument in color_to_full_rgba_matrix()")
|
|
var/list/L = color
|
|
switch(L.len)
|
|
if(3 to 5) // row-by-row hexadecimals
|
|
. = list()
|
|
for(var/a in 1 to L.len)
|
|
var/list/rgb = rgb2num(L[a])
|
|
for(var/b in rgb)
|
|
. += b/255
|
|
if(length(rgb) % 4) // RGB has no alpha instruction
|
|
. += a != 4 ? 0 : 1
|
|
if(L.len < 4) //missing both alphas and constants rows
|
|
. += list(0,0,0,1, 0,0,0,0)
|
|
else if(L.len < 5) //missing constants row
|
|
. += list(0,0,0,0)
|
|
if(9 to 12) //RGB
|
|
. = list(L[1],L[2],L[3],0, L[4],L[5],L[6],0, L[7],L[8],L[9],0, 0,0,0,1)
|
|
for(var/b in 1 to 3) //missing constants row
|
|
. += L.len < 9+b ? 0 : L[9+b]
|
|
. += 0
|
|
if(16 to 20) // RGBA
|
|
. = L.Copy()
|
|
if(L.len < 20) //missing constants row
|
|
for(var/b in 1 to 20-L.len)
|
|
. += 0
|
|
else
|
|
var/message = "Invalid/unsupported color (list of length [L.len]) argument in color_to_full_rgba_matrix()"
|
|
if(return_identity_on_fail)
|
|
stack_trace(message)
|
|
return COLOR_MATRIX_IDENTITY
|
|
CRASH(message)
|
|
|
|
#undef LUMA_R
|
|
#undef LUMA_G
|
|
#undef LUMA_B
|