mirror of
https://github.com/CHOMPStation2/CHOMPStation2.git
synced 2025-12-11 10:43:20 +00:00
Fixed inexplicable reversions.
This commit is contained in:
@@ -153,192 +153,192 @@
|
||||
var/list/sharing_lookup_table = list(0.30, 0.40, 0.48, 0.54, 0.60, 0.66)
|
||||
|
||||
proc/ShareRatio(datum/gas_mixture/A, datum/gas_mixture/B, connecting_tiles)
|
||||
//Shares a specific ratio of gas between mixtures using simple weighted averages.
|
||||
var
|
||||
//Shares a specific ratio of gas between mixtures using simple weighted averages.
|
||||
var
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
ratio = sharing_lookup_table[6]
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
|
||||
size = max(1,A.group_multiplier)
|
||||
share_size = max(1,B.group_multiplier)
|
||||
|
||||
full_oxy = A.oxygen * size
|
||||
full_nitro = A.nitrogen * size
|
||||
full_co2 = A.carbon_dioxide * size
|
||||
full_plasma = A.toxins * size
|
||||
|
||||
full_heat_capacity = A.heat_capacity() * size
|
||||
|
||||
s_full_oxy = B.oxygen * share_size
|
||||
s_full_nitro = B.nitrogen * share_size
|
||||
s_full_co2 = B.carbon_dioxide * share_size
|
||||
s_full_plasma = B.toxins * share_size
|
||||
|
||||
s_full_heat_capacity = B.heat_capacity() * share_size
|
||||
|
||||
oxy_avg = (full_oxy + s_full_oxy) / (size + share_size)
|
||||
nit_avg = (full_nitro + s_full_nitro) / (size + share_size)
|
||||
co2_avg = (full_co2 + s_full_co2) / (size + share_size)
|
||||
plasma_avg = (full_plasma + s_full_plasma) / (size + share_size)
|
||||
|
||||
temp_avg = (A.temperature * full_heat_capacity + B.temperature * s_full_heat_capacity) / (full_heat_capacity + s_full_heat_capacity)
|
||||
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
ratio = sharing_lookup_table[6]
|
||||
if(sharing_lookup_table.len >= connecting_tiles) //6 or more interconnecting tiles will max at 42% of air moved per tick.
|
||||
ratio = sharing_lookup_table[connecting_tiles]
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
|
||||
size = max(1,A.group_multiplier)
|
||||
share_size = max(1,B.group_multiplier)
|
||||
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
|
||||
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1-ratio) + nit_avg )
|
||||
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
|
||||
A.toxins = max(0, (A.toxins - plasma_avg) * (1-ratio) + plasma_avg )
|
||||
|
||||
full_oxy = A.oxygen * size
|
||||
full_nitro = A.nitrogen * size
|
||||
full_co2 = A.carbon_dioxide * size
|
||||
full_plasma = A.toxins * size
|
||||
A.temperature = max(0, (A.temperature - temp_avg) * (1-ratio) + temp_avg )
|
||||
|
||||
full_heat_capacity = A.heat_capacity() * size
|
||||
B.oxygen = max(0, (B.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
|
||||
B.nitrogen = max(0, (B.nitrogen - nit_avg) * (1-ratio) + nit_avg )
|
||||
B.carbon_dioxide = max(0, (B.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
|
||||
B.toxins = max(0, (B.toxins - plasma_avg) * (1-ratio) + plasma_avg )
|
||||
|
||||
s_full_oxy = B.oxygen * share_size
|
||||
s_full_nitro = B.nitrogen * share_size
|
||||
s_full_co2 = B.carbon_dioxide * share_size
|
||||
s_full_plasma = B.toxins * share_size
|
||||
B.temperature = max(0, (B.temperature - temp_avg) * (1-ratio) + temp_avg )
|
||||
|
||||
s_full_heat_capacity = B.heat_capacity() * share_size
|
||||
for(var/datum/gas/G in A.trace_gases)
|
||||
var/datum/gas/H = locate(G.type) in B.trace_gases
|
||||
if(H)
|
||||
var/G_avg = (G.moles*size + H.moles*share_size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
oxy_avg = (full_oxy + s_full_oxy) / (size + share_size)
|
||||
nit_avg = (full_nitro + s_full_nitro) / (size + share_size)
|
||||
co2_avg = (full_co2 + s_full_co2) / (size + share_size)
|
||||
plasma_avg = (full_plasma + s_full_plasma) / (size + share_size)
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
else
|
||||
H = new G.type
|
||||
B.trace_gases += H
|
||||
var/G_avg = (G.moles*size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
temp_avg = (A.temperature * full_heat_capacity + B.temperature * s_full_heat_capacity) / (full_heat_capacity + s_full_heat_capacity)
|
||||
for(var/datum/gas/G in B.trace_gases)
|
||||
var/datum/gas/H = locate(G.type) in A.trace_gases
|
||||
if(!H)
|
||||
H = new G.type
|
||||
A.trace_gases += H
|
||||
var/G_avg = (G.moles*size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
if(sharing_lookup_table.len >= connecting_tiles) //6 or more interconnecting tiles will max at 42% of air moved per tick.
|
||||
ratio = sharing_lookup_table[connecting_tiles]
|
||||
//WOOT WOOT TOUCH THIS AND YOU ARE A RETARD
|
||||
A.update_values()
|
||||
B.update_values()
|
||||
|
||||
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
|
||||
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1-ratio) + nit_avg )
|
||||
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
|
||||
A.toxins = max(0, (A.toxins - plasma_avg) * (1-ratio) + plasma_avg )
|
||||
|
||||
A.temperature = max(0, (A.temperature - temp_avg) * (1-ratio) + temp_avg )
|
||||
|
||||
B.oxygen = max(0, (B.oxygen - oxy_avg) * (1-ratio) + oxy_avg )
|
||||
B.nitrogen = max(0, (B.nitrogen - nit_avg) * (1-ratio) + nit_avg )
|
||||
B.carbon_dioxide = max(0, (B.carbon_dioxide - co2_avg) * (1-ratio) + co2_avg )
|
||||
B.toxins = max(0, (B.toxins - plasma_avg) * (1-ratio) + plasma_avg )
|
||||
|
||||
B.temperature = max(0, (B.temperature - temp_avg) * (1-ratio) + temp_avg )
|
||||
|
||||
for(var/datum/gas/G in A.trace_gases)
|
||||
var/datum/gas/H = locate(G.type) in B.trace_gases
|
||||
if(H)
|
||||
var/G_avg = (G.moles*size + H.moles*share_size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
else
|
||||
H = new G.type
|
||||
B.trace_gases += H
|
||||
var/G_avg = (G.moles*size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
for(var/datum/gas/G in B.trace_gases)
|
||||
var/datum/gas/H = locate(G.type) in A.trace_gases
|
||||
if(!H)
|
||||
H = new G.type
|
||||
A.trace_gases += H
|
||||
var/G_avg = (G.moles*size) / (size+share_size)
|
||||
G.moles = (G.moles - G_avg) * (1-ratio) + G_avg
|
||||
H.moles = (H.moles - G_avg) * (1-ratio) + G_avg
|
||||
|
||||
A.update_values()
|
||||
B.update_values()
|
||||
|
||||
if(A.compare(B)) return 1
|
||||
else return 0
|
||||
if(A.compare(B)) return 1
|
||||
else return 0
|
||||
|
||||
proc/ShareSpace(datum/gas_mixture/A, list/unsimulated_tiles, dbg_output)
|
||||
//A modified version of ShareRatio for spacing gas at the same rate as if it were going into a large airless room.
|
||||
if(!unsimulated_tiles)
|
||||
return 0
|
||||
|
||||
var
|
||||
unsim_oxygen = 0
|
||||
unsim_nitrogen = 0
|
||||
unsim_co2 = 0
|
||||
unsim_plasma = 0
|
||||
unsim_heat_capacity = 0
|
||||
unsim_temperature = 0
|
||||
|
||||
size = max(1,A.group_multiplier)
|
||||
|
||||
var/tileslen
|
||||
var/share_size
|
||||
|
||||
if(istype(unsimulated_tiles, /datum/gas_mixture))
|
||||
var/datum/gas_mixture/avg_unsim = unsimulated_tiles
|
||||
unsim_oxygen = avg_unsim.oxygen
|
||||
unsim_co2 = avg_unsim.carbon_dioxide
|
||||
unsim_nitrogen = avg_unsim.nitrogen
|
||||
unsim_plasma = avg_unsim.toxins
|
||||
unsim_temperature = avg_unsim.temperature
|
||||
share_size = max(1, max(size + 3, 1) + avg_unsim.group_multiplier)
|
||||
tileslen = avg_unsim.group_multiplier
|
||||
|
||||
else if(istype(unsimulated_tiles, /list))
|
||||
if(!unsimulated_tiles.len)
|
||||
//A modified version of ShareRatio for spacing gas at the same rate as if it were going into a large airless room.
|
||||
if(!unsimulated_tiles)
|
||||
return 0
|
||||
// We use the same size for the potentially single space tile
|
||||
// as we use for the entire room. Why is this?
|
||||
// Short answer: We do not want larger rooms to depressurize more
|
||||
// slowly than small rooms, preserving our good old "hollywood-style"
|
||||
// oh-shit effect when large rooms get breached, but still having small
|
||||
// rooms remain pressurized for long enough to make escape possible.
|
||||
share_size = max(1, max(size + 3, 1) + unsimulated_tiles.len)
|
||||
var/correction_ratio = share_size / unsimulated_tiles.len
|
||||
|
||||
for(var/turf/T in unsimulated_tiles)
|
||||
unsim_oxygen += T.oxygen
|
||||
unsim_co2 += T.carbon_dioxide
|
||||
unsim_nitrogen += T.nitrogen
|
||||
unsim_plasma += T.toxins
|
||||
unsim_temperature += T.temperature/unsimulated_tiles.len
|
||||
var
|
||||
unsim_oxygen = 0
|
||||
unsim_nitrogen = 0
|
||||
unsim_co2 = 0
|
||||
unsim_plasma = 0
|
||||
unsim_heat_capacity = 0
|
||||
unsim_temperature = 0
|
||||
|
||||
//These values require adjustment in order to properly represent a room of the specified size.
|
||||
unsim_oxygen *= correction_ratio
|
||||
unsim_co2 *= correction_ratio
|
||||
unsim_nitrogen *= correction_ratio
|
||||
unsim_plasma *= correction_ratio
|
||||
tileslen = unsimulated_tiles.len
|
||||
size = max(1,A.group_multiplier)
|
||||
|
||||
else //invalid input type
|
||||
return 0
|
||||
var/tileslen
|
||||
var/share_size
|
||||
|
||||
unsim_heat_capacity = HEAT_CAPACITY_CALCULATION(unsim_oxygen, unsim_co2, unsim_nitrogen, unsim_plasma)
|
||||
if(istype(unsimulated_tiles, /datum/gas_mixture))
|
||||
var/datum/gas_mixture/avg_unsim = unsimulated_tiles
|
||||
unsim_oxygen = avg_unsim.oxygen
|
||||
unsim_co2 = avg_unsim.carbon_dioxide
|
||||
unsim_nitrogen = avg_unsim.nitrogen
|
||||
unsim_plasma = avg_unsim.toxins
|
||||
unsim_temperature = avg_unsim.temperature
|
||||
share_size = max(1, max(size + 3, 1) + avg_unsim.group_multiplier)
|
||||
tileslen = avg_unsim.group_multiplier
|
||||
|
||||
var
|
||||
ratio = sharing_lookup_table[6]
|
||||
else if(istype(unsimulated_tiles, /list))
|
||||
if(!unsimulated_tiles.len)
|
||||
return 0
|
||||
// We use the same size for the potentially single space tile
|
||||
// as we use for the entire room. Why is this?
|
||||
// Short answer: We do not want larger rooms to depressurize more
|
||||
// slowly than small rooms, preserving our good old "hollywood-style"
|
||||
// oh-shit effect when large rooms get breached, but still having small
|
||||
// rooms remain pressurized for long enough to make escape possible.
|
||||
share_size = max(1, max(size + 3, 1) + unsimulated_tiles.len)
|
||||
var/correction_ratio = share_size / unsimulated_tiles.len
|
||||
|
||||
old_pressure = A.return_pressure()
|
||||
for(var/turf/T in unsimulated_tiles)
|
||||
unsim_oxygen += T.oxygen
|
||||
unsim_co2 += T.carbon_dioxide
|
||||
unsim_nitrogen += T.nitrogen
|
||||
unsim_plasma += T.toxins
|
||||
unsim_temperature += T.temperature/unsimulated_tiles.len
|
||||
|
||||
full_oxy = A.oxygen * size
|
||||
full_nitro = A.nitrogen * size
|
||||
full_co2 = A.carbon_dioxide * size
|
||||
full_plasma = A.toxins * size
|
||||
//These values require adjustment in order to properly represent a room of the specified size.
|
||||
unsim_oxygen *= correction_ratio
|
||||
unsim_co2 *= correction_ratio
|
||||
unsim_nitrogen *= correction_ratio
|
||||
unsim_plasma *= correction_ratio
|
||||
tileslen = unsimulated_tiles.len
|
||||
|
||||
full_heat_capacity = A.heat_capacity() * size
|
||||
else //invalid input type
|
||||
return 0
|
||||
|
||||
oxy_avg = (full_oxy + unsim_oxygen) / (size + share_size)
|
||||
nit_avg = (full_nitro + unsim_nitrogen) / (size + share_size)
|
||||
co2_avg = (full_co2 + unsim_co2) / (size + share_size)
|
||||
plasma_avg = (full_plasma + unsim_plasma) / (size + share_size)
|
||||
unsim_heat_capacity = HEAT_CAPACITY_CALCULATION(unsim_oxygen, unsim_co2, unsim_nitrogen, unsim_plasma)
|
||||
|
||||
temp_avg = 0
|
||||
var
|
||||
ratio = sharing_lookup_table[6]
|
||||
|
||||
if((full_heat_capacity + unsim_heat_capacity) > 0)
|
||||
temp_avg = (A.temperature * full_heat_capacity + unsim_temperature * unsim_heat_capacity) / (full_heat_capacity + unsim_heat_capacity)
|
||||
old_pressure = A.return_pressure()
|
||||
|
||||
if(sharing_lookup_table.len >= tileslen) //6 or more interconnecting tiles will max at 42% of air moved per tick.
|
||||
ratio = sharing_lookup_table[tileslen]
|
||||
full_oxy = A.oxygen * size
|
||||
full_nitro = A.nitrogen * size
|
||||
full_co2 = A.carbon_dioxide * size
|
||||
full_plasma = A.toxins * size
|
||||
|
||||
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1 - ratio) + oxy_avg )
|
||||
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1 - ratio) + nit_avg )
|
||||
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1 - ratio) + co2_avg )
|
||||
A.toxins = max(0, (A.toxins - plasma_avg) * (1 - ratio) + plasma_avg )
|
||||
full_heat_capacity = A.heat_capacity() * size
|
||||
|
||||
A.temperature = max(TCMB, (A.temperature - temp_avg) * (1 - ratio) + temp_avg )
|
||||
oxy_avg = (full_oxy + unsim_oxygen) / (size + share_size)
|
||||
nit_avg = (full_nitro + unsim_nitrogen) / (size + share_size)
|
||||
co2_avg = (full_co2 + unsim_co2) / (size + share_size)
|
||||
plasma_avg = (full_plasma + unsim_plasma) / (size + share_size)
|
||||
|
||||
for(var/datum/gas/G in A.trace_gases)
|
||||
var/G_avg = (G.moles * size) / (size + share_size)
|
||||
G.moles = (G.moles - G_avg) * (1 - ratio) + G_avg
|
||||
temp_avg = 0
|
||||
|
||||
A.update_values()
|
||||
if((full_heat_capacity + unsim_heat_capacity) > 0)
|
||||
temp_avg = (A.temperature * full_heat_capacity + unsim_temperature * unsim_heat_capacity) / (full_heat_capacity + unsim_heat_capacity)
|
||||
|
||||
return abs(old_pressure - A.return_pressure())
|
||||
if(sharing_lookup_table.len >= tileslen) //6 or more interconnecting tiles will max at 42% of air moved per tick.
|
||||
ratio = sharing_lookup_table[tileslen]
|
||||
|
||||
A.oxygen = max(0, (A.oxygen - oxy_avg) * (1 - ratio) + oxy_avg )
|
||||
A.nitrogen = max(0, (A.nitrogen - nit_avg) * (1 - ratio) + nit_avg )
|
||||
A.carbon_dioxide = max(0, (A.carbon_dioxide - co2_avg) * (1 - ratio) + co2_avg )
|
||||
A.toxins = max(0, (A.toxins - plasma_avg) * (1 - ratio) + plasma_avg )
|
||||
|
||||
A.temperature = max(TCMB, (A.temperature - temp_avg) * (1 - ratio) + temp_avg )
|
||||
|
||||
for(var/datum/gas/G in A.trace_gases)
|
||||
var/G_avg = (G.moles * size) / (size + share_size)
|
||||
G.moles = (G.moles - G_avg) * (1 - ratio) + G_avg
|
||||
|
||||
A.update_values()
|
||||
|
||||
return abs(old_pressure - A.return_pressure())
|
||||
|
||||
|
||||
proc/ShareHeat(datum/gas_mixture/A, datum/gas_mixture/B, connecting_tiles)
|
||||
//This implements a simplistic version of the Stefan-Boltzmann law.
|
||||
var/energy_delta = ((A.temperature - B.temperature) ** 4) * 5.6704e-8 * connecting_tiles * 2.5
|
||||
var/maximum_energy_delta = max(0, min(A.temperature * A.heat_capacity() * A.group_multiplier, B.temperature * B.heat_capacity() * B.group_multiplier))
|
||||
if(maximum_energy_delta > abs(energy_delta))
|
||||
if(energy_delta < 0)
|
||||
maximum_energy_delta *= -1
|
||||
energy_delta = maximum_energy_delta
|
||||
//This implements a simplistic version of the Stefan-Boltzmann law.
|
||||
var/energy_delta = ((A.temperature - B.temperature) ** 4) * 5.6704e-8 * connecting_tiles * 2.5
|
||||
var/maximum_energy_delta = max(0, min(A.temperature * A.heat_capacity() * A.group_multiplier, B.temperature * B.heat_capacity() * B.group_multiplier))
|
||||
if(maximum_energy_delta > abs(energy_delta))
|
||||
if(energy_delta < 0)
|
||||
maximum_energy_delta *= -1
|
||||
energy_delta = maximum_energy_delta
|
||||
|
||||
A.temperature -= energy_delta / (A.heat_capacity() * A.group_multiplier)
|
||||
B.temperature += energy_delta / (B.heat_capacity() * B.group_multiplier)
|
||||
A.temperature -= energy_delta / (A.heat_capacity() * A.group_multiplier)
|
||||
B.temperature += energy_delta / (B.heat_capacity() * B.group_multiplier)
|
||||
Reference in New Issue
Block a user